Categoria:
Seminari di Analisi Matematica
Data e ora inizio evento:
Data e ora fine evento:
Aula:
Sala di Consiglio
Sede:
Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma
Speaker:
Alessio Figalli (The University of Texas at Austin)
The classical Faber-Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet-Laplacian among sets with given volume. I will show a sharp quantitative enhancement of this result, confirming a conjecture by Nadirashvili and Bhattacharya-Weitsman: \lambda_1(\Omega)-\lambda_1(B_1)\ge c_N \mathcal A (\Omega)^2\qquad \text{for all \(\Omega\subset \mathbb R^N\) such that \(|\Omega|=|B_1|\)}, where \mathcal A(\Omega) is the Frankel asymmetry of a set: \mathcal A(\Omega)=\inf_{x_0\in \mathbb R^N} |\Omega \Delta B_1(x_0)|. More generally, the result applies to every optimal Poincar\'e-Sobolev constant for the embeddings W^{1,2}_0(\Omega)\hookrightarrow L^q(\Omega).