Top-level heading

Reverse Faber-Krahn inequality for a truncated laplacian operator

Data e ora inizio evento
Data e ora fine evento
Sede

Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma

Aula
Sala di Consiglio
Speaker

Enea Parini (Institut de Mathématique de Marseille)

In this talk we will consider a reverse Faber-Krahn inequality for the principal eigenvalue μ_1(Ω) of the fully nonlinear operator P_{+N}u:=λ_N(D2u), where Ω⊂R^N is a bounded, open convex set, and λ_N(D^2u) is the largest eigenvalue of the Hessian matrix of u. The result will be a consequence of the isoperimetric inequality μ_1(Ω)≤π^2diam(Ω)^2. Moreover, we will discuss the minimization of μ1 under various kinds of constraints. The results have been obtained in collaboration with Julio D. Rossi and Ariel Salort (Buenos Aires).