We consider an equation in divergence form with a singular/degenerate weight. We first study the regularity of the nodal sets of solutions in the linear case. Next, when the r.h.s. does not depend on ...
Le algebre cluster sono una classe di anelli commutativi introdotti da Fomin e Zelevinsky come strumento nel loro studio delle proprietà di positività delle basi canoniche duali di Lusztig. Sin dalla ...
09:30 - 10:15 Riccardo Adami Alla ricerca della non linearita' puntuale critica per l'equazione di Schroedinger in due dimensioni10:45 - 11:30 Raffaele Carlone Su alcuni argome...
Cosa rimane della ricerca matematica quando si affrontano problemi reali? Proveremo a rispondere raccontando la collaborazione tra IAC-CNR e Autovie Venete, mirata alla creazione di un software profes...
We prove, using variational methods, the existence in dimension two of positive vector ground states solutions for Bose-Einstein type systems. The nonlinear interaction between two Bose fluids is assu...
We study the behavior as t \to +\infty of unbounded solutions of the so-called viscous Hamilton-Jacobi equation in the whole space R^N, in the superquadratic case; i.e., u_t - \Delta u +...
The measure theoretic generalization of oriented submanifolds of R^N of any dimension, are currents. One the most important theorem is the compactness criterium of Federer-Fleming. We try to prove and...
Homogenization of Hamilton-Jacobi equations with non-convex Hamiltonians in stationary ergodic random media is a largely open problem. In the last 5 years several classes of examples and counter-examp...
We prove that by scaling nearest-neighbour ferromagnetic energies defined on Poisson clouds in the plane we obtain an isotropic perimeter energy with a surface tension characterised by an asymptotic f...