Top-level heading

Two characterizations of Dirichlet-Ferguson measures

Categoria
Seminari di Probabilità
Data e ora inizio evento
Data e ora fine evento
Aula
Sala di Consiglio
Sede

Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma

Speaker

Lorenzo Dello Schiavo (Institut fur Angewandte Mathematik - University of Bonn)

We consider the Dirichlet-Ferguson (DF) measure, a random probability on a locally compact Polish space X introduced by Ferguson in [1]. The measure has ever since found many applications, widely ranging from Bayesian non-parametrics to population genetics and stochastic dynamics of infinite particle systems. Firstly, we compute the characteristic functional of DF measures (addressing, if time permits, connections of these measures with Lie algebra theory and Polya Enumeration Theory). Secondly, we prove a characterization of DF measures via a Mecke-type integral identity. Profiting of connections between DF measures and Poisson measures on configuration spaces, we argue how DF measures may be regarded as 'canonical' measures on the space P(X) of Borel probability measures on X. Partly based on joint work with E. W. Lytvynov, University of Swansea, Wales, UK. [1] Ferguson, T. S., Ann. Stat. 1(2), pp. 209-230, 1973.