La localizzazione degli elettroni nei solidi cristallini è spesso espressa in termini delle funzioni di Wannier, che forniscono una base ortonormale di L^2(R^d) canonicamente associata ad un dato oper...
Nel 1978 E. De Giorgi formulò una celebre congettura sul carattere unidensionale di alcune soluzioni di una classe di problemi ellittici, nel seminario ripercorrerò la storia della risoluzione di tale...
Introdurrò una descrizione puramente analitico-reale del Principio di Indeterminazione, in alcune delle sue note manifestazioni matematiche (indeterminazione di Heisenberg, indeterminazione di Hardy, ...
Bivariate dependence may be of such complexity that no single family of known parametric copulas is able to give an acceptable goodnes of fit. The gluing copula approach may be of good help in decompo...
The East model is a one-dimensional interacting particle system with non attractive spin-flip dynamics. In the physics literature, it is a key example of a model with glassy features. Here we take thi...
In 1998 the physicists Hastings and Levitov introduced a family of continuum models to describe a range of physical phenomena of planar aggregation/diffusion. These consist of growing random clusters ...
For more than two decades, the Lattice Boltzmann (LB) method has gained increasing interest as an efficient computational scheme for the numerical simulation of complex fluid problems across a broad r...
We discuss an epsilon-regularity result at the endpoint of connected arcs for 2-dimensional Mumford-Shah minimizers obtained in a joint work with C. De Lellis (U. Zuerich). As an outcome of our analys...
the first part of the talk will be an introduction to the general theory of random walks on groups with some classical results on entropy, rate of escape ... . For hyperbolic groups, these probabilist...
Experiments indicate that one of the main forces in pedestrian dynamics is collision avoidance. In other words individuals actively anticipate the future to predict a possible collision time and adjus...
We introduce a notion of gradient and an infimal-convolution operator that extend properties of solutions of Hamilton Jacobi equations to more general spaces, in particular to graphs. As a main applic...
We discuss vortex configurations in the abelian self-dual Chern-Simons-Higgs model, where topological invariants can just describe a part of the picture. We construct non-topological condensates (=dou...