Research group in Harmonic Analysis and Dispersive PDE's
Academic staff
Piero D’Ancona, Luca Fanelli
Post-docs and graduate students
Federico Cacciafesta, Biagio Cassano, Lucrezia Cossetti
Research areas
- Linear dispersive equations: Schrodinger, Wave, Klein-Gordon and Dirac equations, time-decay and Strichartz estimates, local smoothing, linear scattering, wave operators, electromagnetic potentials, Helmholtz equations, uncertainty principles, unique continuation, Hardy inequalities, hyperbolic equations and systems (F. Cacciafesta, B. Cassano, L. Cossetti P. D’Ancona, L. Fanelli)
- Nonlinear dispersive equations: Cauchy theory, Morawetz and bilinear Morawetz estimates, nonlinear scattering, systems of coupled NLS, nonlinear hyperbolic equations, geometric equations, wave maps, bilinear estimates, Dirac-Klein-Gordon and Maxwell-Dirac systems (B. Cassano, P. D'Ancona, L. Fanelli)
- Harmonic analysis: weighted estimates for powers and functions of an operator, Lp estimates for Schrodinger flows (F. Cacciafesta, P. D’Ancona)
Additional info
http://www1.mat.uniroma1.it/people/fanelli/firb2012/