Mathematical Physics, Numerical Analysis, and Probability
Reading courses in Mathematical Physics, Numerical Analysis, and Probability
- Mathematical methods in Quantum Mechanics (A. Teta, G. Panati)
- Mathematics for artificial intelligence (E. Agliari)
- Ginzburg-Landau Theory of Superconductivity (M. Correggi)
- Stability of Matter (M. Correggi)
- Dynamics of infinitely many particles and models of viscous friction (P. Buttà, G. Cavallaro)
- Gradient flow and applications to discrete spaces (G. Basile, L. Bertini)
- Percolation (A. Faggionato) (link al corso)
- Convergence to equilibrium for markov processes (A. Faggionato, M. Mariani, G. Posta)
- Large deviations (A. Faggionato, M. Mariani, G. Posta)
- Stochastic systems of interacting particles (A. Faggionato, M. Mariani, G. Posta)
- Mixing time in Markov chains (A. Faggionato, M. Mariani, G. Posta)
- Numerical Methods in linear algebra (S. Noschese)
- Collective dynamics and self-organizing systems (E. Cristiani)