Prossimi notiziari settimanali

Su questa pagina, è possibile visualizzare le richieste approvate dai redattori per la pubblicazione di eventi nel notiziario scientifico delle prossime 2 settimane.

Seleziona il lunedì della settimana che desideri visualizzare:   


Notiziario dei seminari di carattere matematico
a cura del Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma

Settimana dal 21-10-2024 al 27-10-2024


Martedì 22 ottobre 2024
Ore 14:30, Aula Primo Piano, CNR-IAC, via dei Taurini 19 00185 Roma
Seminari Generali dell'IAC
Marta Menci (Campus Biomedico )
Simulating Crowd Dynamics: from low to high-density scenarios
In this talk I will present some recent results concerning modelling and simulations of collective behaviors emerging in pedestrian dynamics. Starting from the '70s, a great variety of models have been proposed, spanning different scales of descriptions and approaches. The focus will be on a novel distance-based zeroth-order discrete-in-time model, which offers a powerful tool for simulating crowd behavior at a microscopic level. This model is specifically designed to reproduce key self-organizing patterns typically observed in crowds, as well as the propagation of material waves that emerge in high-densities scenarios. Unlike well-established models of the literature, the proposed model provides a novel perspective by eliminating common issues found in the widely-used social force model, such as unrealistic inertia and oscillatory movements. These refinements make the model more reliable and accurate for practical applications. I will show how the models considered during the talk can handle a variety of real-world scenarios and challenges through a series of numerical simulations.
Per informazioni, rivolgersi a: roberta.bianchini@cnr.it


Venerdì 25 ottobre 2024
Ore 12:00, Aula INdAM, INdAM, Dipartimento di Matematica, Sapienza Università di Roma
Number Theory Seminar
Andrea Bandini (Università di Pisa)
Iwasawa theory for $\ell$-parts in pro-$p$-extensions and a theorem of Sinnott
Iwasawa theory studies arithmetically significant modules (e.g. class groups and Selmer groups) associated with pro-$p$-extensions $K/k$ of global fields ($p$ a prime). It usually focuses on $p$-parts of such modules and few results are known on $\ell$-parts ($\ell\neq p$ another prime), mainly obtained by means of analytic methods. We present an algebraic approach to study $\ell$-parts as modules over the algebra $\mathbb{Z}_\ell[[\text{Gal}(K/k)]]$, providing structure theorems, characteristic ideals, orders, $\mathbb{Z}_\ell$-ranks and so on. In the case of class groups, such modules naturally verify a theorem of Sinnott on the $p$-adic limit of their orders (or their $\mathbb{Z}_\ell$-ranks when they are not finite). We show that this holds for more general modules and (if time permits) conclude with a (tentative) formulation of a Main Conjecture for this setting. This is joint work with Ignazio Longhi (Torino).
Per informazioni, rivolgersi a: cherubini@altamatematica.it


Le comunicazioni relative a seminari da includere in questo notiziario devono pervenire esclusivamente mediante apposita form da compilare online, entro le ore 24 del giovedì precedente la settimana interessata. Le comunicazioni pervenute in ritardo saranno ignorate. Per informazioni, rivolgersi all'indirizzo di posta elettronica seminari@mat.uniroma1.it.
Coloro che desiderano ricevere questo notiziario via e-mail sono pregati di comunicare il proprio indirizzo di posta elettronica a seminari@mat.uniroma1.it.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma