Nel seminario si presenteranno delle applicazioni delle algebre di vertice e algebre di vertice di Poisson in algebra, geometria e sistemi integrabili. In particolare si introdurrà la nozione di W-alg...
Le varietà Riemanniane con olonomia speciale sono alcune delle strutture geometriche più rilevanti in geometria differenziale. In particolare, metriche con olonomia speciale sono Einstein, risolvono c...
Besides their self-evident geometric significance, which can be traced back at least to Courant, free boundary minimal surfaces also naturally arise in partitioning problems for convex bodies, in capi...
Il mio principale tema di ricerca è l'approssimazione di problemi su larga scala per equazioni alle derivate parziali (PDE). Ciò coinvolge metodi numerici che risolvono PDE in tempo reale mediante tec...
Fractional diffusion is the most widespread application of fractional calculus. Actually, it gave to fractional calculus the required visibility for becoming a remarkable tool in modelling, because of...
Discuterò problemi e progressi recenti sulla dinamica statistica di un sistema deterministico di particelle classiche, nel limite cinetico che è governato, all'ordine principale, dall'equazione di Bol...
The analytic surgery sequence is a long exact sequence of K-theory groups which combines
topological information (the K-homology of manifolds), index theoretic information (the
K-theory of group C*-al...
The Chern character is a central construction which appears in topology, representation
theory and algebraic geometry.
In algebraic topology it is for instance used to probe algebraic K-theory which i...
The theory of conformal blocks provides us with projective representations of the mapping
class group. These can equivalently also be constructed from the point of view of
non-abelian theta functions,...
Sub-Riemannian systems are an important class of nonlinear control systems with linear dependence on controls. Controllability properties for such systems are derived by the so-called Lie Algebra rank...
Quasi-fibered boundary metrics (QFB metrics) form a class of complete metrics generalizing
the class of quasi-asymptotically locally Euclidean metrics introduced by Joyce.
After reviewing what QFB met...
A key tool to study the plane Cremona group is its action on a hyperbolic space. Sadly, in higher rank such an action is not available. Recently, in geometric group theory, actions on CAT(0) cube comp...