La mancanza di regolarità è un caratteristica delle soluzioni deboli di equazioni iperboliche e costituisce il problema principale nella loro approssimazione numerica. Per questo motivo si è resa nece...
Si presenta uno studio numerico per un modello di diffusione non lineare in cui la soluzione evolve verso uno stato critico assegnato. Nel modello, studiato da Barbu e più recentemente da Mosco in con...
Le ricostruzioni di alto ordine delle famiglie WENO, CWENO (e varianti) sono solitamente progettate per usare un polinomio di ricostruzione centrale di grado 2r in zone dove la soluzione è regolare, p...
Magnetoencephalography (MEG) aims at reconstructing the unknown neuroelectric activity in the brain from non-invasive measurements of the magnetic field produced by neural sources in the outer space. ...
We study the numerical approximation of parabolic, possibly degenerate, Hamilton-Jacobi-Bellman (HJB) equations in bounded domains. It is well known that convergence of the numerical approximation to ...
In this talk I will present a data-driven iteratively regularized Landweber iteration for solving linear and nonlinear ill-posed inverse problems. The method takes into account training data, which ar...
The classical Dynamic Programming (DP) approach to optimal control problems is based on the characterization of the value function as the unique viscosity solution of a Hamilton-Jacobi-Bellman (HJB) e...
The broad research thematic of flows on networks was addressed in recent years by many researchers, in the area of applied mathematics, with new models based on partial differential equations. The lat...
The aim of this talk is to introduce a method to estimate the production of ozone due to vehicular traffic. The traffic flow is modeled via the second-order Collapsed Generalized Aw-Rascle-Zhang model...
In this talk, we present the construction of PDE model describing the evolution of microalgae or bacteria interacting together and in interaction with their environment. These models are based on the ...