Data e ora inizio evento:
Data e ora fine evento:
Sede:
Dipartimento di Matematica Guido Castelnuovo, Università Sapienza Roma
Aula:
Sala di Consiglio
Speaker ed affiliazione:
Andrea Aspri, Ricam
In this talk I will present a data-driven iteratively regularized Landweber iteration for solving linear and nonlinear ill-posed inverse problems. The method takes into account training data, which are used to estimate the interior of a black box, which is used to define the iteration process. I will show convergence and stability results for the scheme in the infinite dimensional Hilbert spaces and then I will discuss some numerical experiments.