PhD research topic - Andrea Sambusetti

Andrea Sambusetti

Research areas

Riemannian geometry, geometric group theory

Keywords

negative curvature, Gromov-Hausdorff convergence, entropy, geometric and topological rigidity, 3-manifolds, hyperbolic groups
 

Research topics

My present interests and possible research themes concern:
- convergence of Riemannian manifolds under entropy bounds
- dynamics on negatively curved manifolds of finite volume
- entropy and systoles of relative hyperbolic and hyperbolically acylindrical groups.
 

Bibliography

[1] Besson G., Courtois G., Gallot S., Sambusetti A., Curvature-free Margulis lenma for Gromov-hyperbolic groups (arxiv 1712:08386)
[2] Dal’Bo F., Peigné M., Picaud J., Sambusetti A., Asymptotic geometry of negatively curved manifolds of finite volume, to appear in Annales Scientifiques de l’E.N.S. (arxiv 1503:03971)
[3] Fukaya K., Metric Riemannian Geometry, Handbook of Differential Geometry, vol.II
[4] Osin D., Acylindrically hyperbolic groups, Trans.Amer.Math.Soc.368, 851-888 (2016)
[5] Sormani C., How Riemannian manifolds converge, Metric and differential geometry, Progress in Mathematics 297, 91-117
 

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma