Le algebre cluster sono una classe di anelli commutativi introdotti da Fomin e Zelevinsky come strumento nel loro studio delle proprietà di positività delle basi canoniche duali di Lusztig. Sin dalla ...
09:30 - 10:15 Riccardo Adami Alla ricerca della non linearita' puntuale critica per l'equazione di Schroedinger in due dimensioni10:45 - 11:30 Raffaele Carlone Su alcuni argome...
Cosa rimane della ricerca matematica quando si affrontano problemi reali? Proveremo a rispondere raccontando la collaborazione tra IAC-CNR e Autovie Venete, mirata alla creazione di un software profes...
We prove, using variational methods, the existence in dimension two of positive vector ground states solutions for Bose-Einstein type systems. The nonlinear interaction between two Bose fluids is assu...
We study the behavior as t \to +\infty of unbounded solutions of the so-called viscous Hamilton-Jacobi equation in the whole space R^N, in the superquadratic case; i.e., u_t - \Delta u +...
The measure theoretic generalization of oriented submanifolds of R^N of any dimension, are currents. One the most important theorem is the compactness criterium of Federer-Fleming. We try to prove and...
Homogenization of Hamilton-Jacobi equations with non-convex Hamiltonians in stationary ergodic random media is a largely open problem. In the last 5 years several classes of examples and counter-examp...
We prove that by scaling nearest-neighbour ferromagnetic energies defined on Poisson clouds in the plane we obtain an isotropic perimeter energy with a surface tension characterised by an asymptotic f...
We consider two interacting particle systems, Activated Random Walk and Oil and Water, which belong to the so-called class of Abelian networks. In these systems particles of two different types are pr...