Categoria:
Altro (categoria non censita)
Categoria non censita:
Seminario di Sistemi Dinamici & Analisi Matematica
Data e ora inizio evento:
Data e ora fine evento:
Aula:
Altro (Aula esterna al Dipartimento)
Sede:
Dipartimento di Matematica, Università di Roma "Tor Vergata"
Aula esterna:
Aula Dal Passo
Speaker:
Rotem Assouline (Institut de Mathématiques de Jussieu - Paris Rive Gauche)
In this talk, we will demonstrate how the celebrated connection between Ricci curvature, optimal transport, and geometric inequalities such as the Brunn-Minkowski inequality, extends to the setting of general Lagrangians on weighted manifolds. As applications, we will state a generalization of the horocyclic Brunn-Minkowski inequality to complex hyperbolic space of arbitrary dimension, and a new Brunn-Minkowski inequality for contact magnetic geodesics on odd-dimensional spheres. The main technical tool is a generalization of Klartag's needle decomposition technique to the Lagrangian setting.
Note: This talk is part of the activity of the MIUR Department of Excellence Project MatMod@TOV (2023–2027)
Contatti/Organizzatori:
Alfonso Sorrentino sorrentino@mat.uniroma2.it