Abstract: Let C be a Riemann surface, x_1,...,x_n a set of points on C, and a_1,...,a_n integers adding up to 0. The theorem of Abel and Jacobi determines when C carries a meromorphic function with zeroes and poles at the points x_i, with multiplicities given by a_i. Modern versions of the theorem ask the same question in families -- to determine the locus of curves that admit meromorphic functions with prescribed zeroes and poles inside the moduli space of curves. In this talk, I will explain how recent progress in the intersection theory of normal crossings pairs leads to a solution of this and several related problems.
Logarithmic Intersection Theory
Data e ora inizio evento:
Aula:
Sala di Consiglio
Sede:
Dipartimento di Matematica Guido Castelnuovo, Università Sapienza Roma
Speaker:
dott. Samouil Molcho risultato vincitore di una procedura selettiva per una posizione di RTT nel Settore Concorsuale ex 01/A2, ora MATH02
Data pubblicazione evento: