Top-level heading

Multiplicative Relations Among Differences of Singular Moduli

Categoria
Altro (categoria non censita)
Categoria non censita
Seminario di Teoria dei Numeri
Data e ora inizio evento
Data e ora fine evento
Aula
Altro (Aula esterna al Dipartimento)
Sede

Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre

Aula esterna
Aula B
Speaker
Sebastian Eterovic
A singular modulus is the j-invariant of an elliptic curve with complex multiplication; as such the arithmetic and algebraic properties of these numbers are of great interest. In particular, there are important results concerning the behavior of differences of singular moduli, and also about the multiplicative dependencies that can arise among singular moduli. In joint work with Vahagn Aslanyan and Guy Fowler we show that for every positive integer n there are a finite set S and finitely many algebraic curves \(T_1,...,T_k\) with the following property: if \((x_1,...,x_n,y)\) is a tuple of pairwise distinct singular moduli so that the differences \( (x_1-y),...,(x_n-y)\) are multiplicatively dependent, then \( (x_1,..., x_n, y)\) belongs either to \(S\) or to one of the curves \(T_1,...,T_k\).
Contatti/Organizzatori
laura.capuano1987@gmail.com