Top-level heading

The first two moments for the length of the period of the continued fraction expansion for \(\sqrt{d}\)

Categoria
Altro (categoria non censita)
Categoria non censita
Number Theory Seminar
Data e ora inizio evento
Data e ora fine evento
Aula
Altro (Aula esterna al Dipartimento)
Sede

INdAM, Dipartimento di Matematica, Sapienza Università di Roma

Aula esterna
Aula INdAM
Speaker
Francesco Battistoni
This is a joint work with Loic Grenié and Giuseppe Molteni. Given a positive integer \(d\) which is not a square, denote by \(T(d)\) the length of the period of the continued fraction expansion for \(\sqrt{d}\). We prove upper bounds for the first and the second moment of \(T(d)\) by studying a different function \(g(d)\), originally introduced by Hickerson: we detect the asymptotic of the first moment of \(g(d)\) and an upper bound for the second moment. The results allow to improve the estimates for the size of the sets of integers \(d\) for which \(T(d) > \alpha\sqrt{d}\), with \(\alpha\) a real parameter. We also report recent progress by Korolev on the asymptotic for the second moment of \(g(d)\).
Contatti/Organizzatori
cherubini@altamatematica.it