Top-level heading

Two dimensional versions of the affine Grassmannians

Categoria
Altro (categoria non censita)
Categoria non censita
Algebra and Representation Theory Seminar (ARTS)
Data e ora inizio evento
Data e ora fine evento
Aula
Altro (Aula esterna al Dipartimento)
Sede

Dipartimento di Matematica, U Roma Tor Vergata

Aula esterna
Aula Dal Passo
Speaker
Valerio Melani (U Firenze)
Let G be a complex affine algebraic group. If C is a smooth algebraic curve and x is a point in C, the affine Grassmannian is an algebro-geometric object that parametrizes G-bundles on C together with a trivialization outside x. Alternatively, one can define the affine Grassmannian as the quotient G((t))/G[[t]]. In this talk, we present possible analogues for the affine Grassmannian, in the setting where the curve is replaced by a smooth projective surface, and the trivialization data are specified with respect to flags of closed subschemes. We also obtain parallel descriptions in terms of quotients of the double loop group G((t))((s)). Based on a joint work A. Maffei and G. Vezzosi.