Top-level heading

Sparse polynomial regression for optimal feedback laws

Data e ora inizio evento
Data e ora fine evento
Sede

Dipartimento di Matematica Guido Castelnuovo, Università Sapienza Roma

Aula
Altro (Aula esterna al Dipartimento)
Aula esterna
ZOOM Meeting
Speaker ed affiliazione

Dante Kalise, Nottingham University

In this talk, we discuss a data-driven regression framework for the computation of high-dimensional optimal feedback laws. We propose a causality-free approach for approximating the value function of deterministic control problems via Pontryagin's Maximum Principle. A cloud of open-loop solves and the augmented information from the adjoints are used to perform a LASSO regression for a polynomial model of the value function. This allows to compute a reduced complexity representation of the optimal feedback map.