Data e ora inizio evento:
Data e ora fine evento:
Sede:
Dipartimento di Matematica Guido Castelnuovo, Università Sapienza Roma
Aula:
Altro (Aula esterna al Dipartimento)
Aula esterna:
ZOOM Meeting
Speaker ed affiliazione:
Dante Kalise, Nottingham University
In this talk, we discuss a data-driven regression framework for the computation of high-dimensional optimal feedback laws. We propose a causality-free approach for approximating the value function of deterministic control problems via Pontryagin's Maximum Principle. A cloud of open-loop solves and the augmented information from the adjoints are used to perform a LASSO regression for a polynomial model of the value function. This allows to compute a reduced complexity representation of the optimal feedback map.