Categoria:
Seminari di Analisi Matematica
Data e ora inizio evento:
Data e ora fine evento:
Aula:
Sala di Consiglio
Sede:
Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma
Speaker:
Tien Duc Luu (Sapienza Università di Roma)
In the last century, there are major advances on the existence and structure of minimal sets. In 1968, F. Almgren has showed that if a minimal cone over a smooth hypersurface in {\mathbb R}^4 is stable, then the cone must be a hyperplane. In 1975, J.Taylor gave a complete local description of two-dimensional minimal surface in {\mathbb R}^3. Yet the existence of least-area soap films with given boundary in {\mathbb R}^3 and their structure in higher dimensions remains open. In this talk we give some results of regularity of three-dimensional minimal cones in {\mathbb R}^n, we also treat the regularity of three-dimensional minimal sets in some particuliar cases.