Top-level heading

Regularity of minimal sets in Euclidean space

Categoria
Seminari di Analisi Matematica
Data e ora inizio evento
Data e ora fine evento
Aula
Sala di Consiglio
Sede

Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma

Speaker

Tien Duc Luu (Sapienza Università di Roma)

In the last century, there are major advances on the existence and structure of minimal sets. In 1968, F. Almgren has showed that if a minimal cone over a smooth hypersurface in {\mathbb R}^4 is stable, then the cone must be a hyperplane. In 1975, J.Taylor gave a complete local description of two-dimensional minimal surface in {\mathbb R}^3. Yet the existence of least-area soap films with given boundary in {\mathbb R}^3 and their structure in higher dimensions remains open. In this talk we give some results of regularity of three-dimensional minimal cones in {\mathbb R}^n, we also treat the regularity of three-dimensional minimal sets in some particuliar cases.