Top-level heading

Asymptotically full measure sets of almost-periodic solutions for the NLS equation

Categoria
Altro (categoria non censita)
Categoria non censita
Seminario di Equazioni Differenziali
Data e ora inizio evento
Data e ora fine evento
Aula
Altro (Aula esterna al Dipartimento)
Sede

Dipartimento di Matematica, Università di Roma "Tor Vergata"

Aula esterna
Aula Dal Passo
Speaker
Livia Corsi (Università Roma Tre)
In the study of close to integrable Hamiltonian PDEs, a fundamental question is to understand the behaviour of “typical” solutions. With this in mind it is natural to study the persistence of almost-periodic solutions and infinite dimensional invariant tori, which are in fact typical in the integrable case. In this talk I shall consider a family of NLS equations parametrized by a smooth convolution potential and prove that for “most” choices of the parameter there is a full measure set of Gevrey initial data that give rise to almost-periodic solutions whose hulls are invariant tori. As a consequence the elliptic fixed point at the origin turns out to be statistically stable in the sense of Lyapunov. This is a joint work with L.Biasco, G.Gentile and M.Procesi. Note: This talk is part of the activity of the MIUR Department of Excellence Project MatMod@TOV (2023–2027).
Contatti/Organizzatori
Alfonso Sorrentino (sorrentino@mat.uniroma2.it)