Categoria:
Altro (categoria non censita)
Categoria non censita:
Seminario di Equazioni Differenziali
Data e ora inizio evento:
Data e ora fine evento:
Aula:
Altro (Aula esterna al Dipartimento)
Sede:
Dipartimento di Matematica, Università di Roma "Tor Vergata"
Aula esterna:
Aula Dal Passo
Speaker:
Livia Corsi (Università Roma Tre)
In the study of close to integrable Hamiltonian PDEs, a fundamental question is to understand the behaviour of “typical” solutions. With this in mind it is natural to study the persistence of almost-periodic solutions and infinite dimensional invariant tori, which are in fact typical in the integrable case. In this talk I shall consider a family of NLS equations parametrized by a smooth convolution potential and prove that for “most” choices of the parameter there is a full measure set of Gevrey initial data that give rise to almost-periodic solutions whose hulls are invariant tori. As a consequence the elliptic fixed point at the origin turns out to be statistically stable in the sense of Lyapunov. This is a joint work with L.Biasco, G.Gentile and M.Procesi.
Note: This talk is part of the activity of the MIUR Department of Excellence Project MatMod@TOV (2023–2027).
Contatti/Organizzatori:
Alfonso Sorrentino (sorrentino@mat.uniroma2.it)

