Categoria:
Seminari di Analisi Matematica
Data e ora inizio evento:
Data e ora fine evento:
Aula:
Altro (Aula esterna al Dipartimento)
Sede:
Dipartimento di Matematica, Università di Roma "Tor Vergata"
Aula esterna:
Aula Dal Passo
Speaker:
Bruno Premoselli (Université Libre de Bruxelles)
Let $(M,g)$ be a closed Riemannian manifold of dimension $n \ge 3$ and $P_g$ be a conformally-covariant operator on $(M,g)$. We consider in this talk two problem at the crossroads of conformal geometry and spectral theory: 1) determining the extremal value that the renormalized eigenvalues of $P_g$ take as $g$ runs through a fixed conformal class and 2) determining whether these extremal values are attained at an extremal metric. Examples of such operators $P_g$ include the famous conformal Laplacian of the Yamabe problem, $P_g = \Delta_g + c_n S_g$, but also its higher-order generalisations such as the GJMS operators of order $2k$ for any positive integer $k$.
Contatti/Organizzatori:
molle@mat.uniroma2.it

