Top-level heading

Extremising eigenvalues of the GJMS operators in a fixed conformal class

Categoria
Seminari di Analisi Matematica
Data e ora inizio evento
Data e ora fine evento
Aula
Altro (Aula esterna al Dipartimento)
Sede

Dipartimento di Matematica, Università di Roma "Tor Vergata"

Aula esterna
Aula Dal Passo
Speaker
Bruno Premoselli (Université Libre de Bruxelles)
Let $(M,g)$ be a closed Riemannian manifold of dimension $n \ge 3$ and $P_g$ be a conformally-covariant operator on $(M,g)$. We consider in this talk two problem at the crossroads of conformal geometry and spectral theory: 1) determining the extremal value that the renormalized eigenvalues of $P_g$ take as $g$ runs through a fixed conformal class and 2) determining whether these extremal values are attained at an extremal metric. Examples of such operators $P_g$ include the famous conformal Laplacian of the Yamabe problem, $P_g = \Delta_g + c_n S_g$, but also its higher-order generalisations such as the GJMS operators of order $2k$ for any positive integer $k$.
Contatti/Organizzatori
molle@mat.uniroma2.it