Top-level heading

Effectiveness and strong graph indivisibility

Categoria
Altro (categoria non censita)
Categoria non censita
Sapienza LoC3 Seminar: Logic, Complexity, Combinatorics and Computability
Data e ora inizio evento
Data e ora fine evento
Aula
Aula C
Sede

Dipartimento di Matematica, Sapienza Università di Roma

Speaker
Andrea Volpi (Università di Udine)

A relational structure is strongly indivisible if for every partition $M = X_0 \sqcup X_1$, the induced substructure on $X_0$ or $X_1$ is isomorphic to $M$. Cameron (1997) showed that a graph is strongly indivisible if and only if it is the complete graph, the completely disconnected graph, or the random graph. We analyze the strength of Cameron’s theorem using tools from computability theory and reverse mathematics. We show that Cameron’s theorem is effective up to computable presentation, and give a partial result towards showing that the full theorem holds in the $\omega$-model $\mathsf{REC}$. We also establish that Cameron’s original proof makes essential use of the stronger induction scheme $I\Sigma^0_2$. This is joint work with Damir Dzhafarov and Reed Solomon.

Funded by the European Union – Next Generation EU Prin 2022 (CUP G53D23001780006, Project Code 2022BXH4R5)

Seminario organizzato da Lorenzo Carlucci (Matematica) e Nicola Galesi (DIAG).

 

Contatti/Organizzatori

lorenzo.carlucci@uniroma1.it