Top-level heading

Dimension theory of endomorphisms of P^k

Categoria
Altro (categoria non censita)
Categoria non censita
Seminario di sistemi dinamici
Data e ora inizio evento
Data e ora fine evento
Aula
Aula F
Sede

Dipartimento di Matematica, Sapienza Università di Roma

Speaker
Yan Mary He, University of Oklahoma
Let $k \geq 1$ be an integer and let $f\colon \mathbb C\mathbb P^k \to \mathbb C\mathbb P^k$ be a holomorphic endomorphism of algebraic degree at least 2. Let $\nu$ be an invariant ergodic probability measure with positive Lyapunov exponents. In this talk, we will introduce a volume dimension of the measure $\nu$ which is equivalent to the Hausdorff dimension when $k =1$ but depends on the dynamics of the map when $k \geq 2$ to incorporate the non-conformality of holomorphic maps in higher dimensional projective spaces. We prove a generalized Mane-Manning formula relating the dimension, entropy and Lyapunov exponents of $\nu$. As applications we will characterize the first zero of a pressure function for expanding invariant measure in terms of their volume dimensions. For hyperbolic maps, such zero also coincides with the volume dimension of the Julia set, and with the exponent of a natural (volume-)conformal measure. The talk is based on joint work with Fabrizio Bianchi.