Top-level heading

A Quantitative Central Limit Theorem for the Euler-Poincaré Characteristic of Random Spherical Eigenfunctions

Categoria
Seminari di Probabilità
Data e ora inizio evento
Data e ora fine evento
Aula
Sala di Consiglio
Sede

Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma

Speaker

D. Marinucci (Tor Vergata, Roma)

We establish here a Quantitative Central Limit Theorem (in Wasserstein distance) for the Euler-Poincaré Characteristic of excursion sets of random spherical eigenfunctions in dimension 2. Our proof is based upon a decomposition of the Euler-Poincaré Characteristic into different Wiener-chaos components: we prove that its asymptotic behaviour is dominated by a single term, corresponding to the chaotic component of order two. As a consequence, we show how the asymptotic dependence on the threshold level u is fully degenerate, i.e. the Euler-Poincaré Characteristic converges to a single random variable times a deterministic function of the threshold. This deterministic function has a zero at the origin, where the variance is thus asymptotically of smaller order. Our results can be written as an asymptotic second-order Gaussian Kinematic Formula for the excursion sets of Gaussian spherical harmonics. Based on a joint work with Valentina Cammarota.