Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma
D. Marinucci (Tor Vergata, Roma)
We establish here a Quantitative Central Limit Theorem (in Wasserstein distance) for the Euler-Poincaré Characteristic of excursion sets of random spherical eigenfunctions in dimension 2. Our proof is based upon a decomposition of the Euler-Poincaré Characteristic into different Wiener-chaos components: we prove that its asymptotic behaviour is dominated by a single term, corresponding to the chaotic component of order two. As a consequence, we show how the asymptotic dependence on the threshold level u is fully degenerate, i.e. the Euler-Poincaré Characteristic converges to a single random variable times a deterministic function of the threshold. This deterministic function has a zero at the origin, where the variance is thus asymptotically of smaller order. Our results can be written as an asymptotic second-order Gaussian Kinematic Formula for the excursion sets of Gaussian spherical harmonics. Based on a joint work with Valentina Cammarota.

