Top-level heading

Rational points of bounded height on the chordal cubic fourfold

Categoria
Altro (categoria non censita)
Categoria non censita
Seminario di Geometria e Teoria dei Numeri
Data e ora inizio evento
Data e ora fine evento
Aula
Altro (Aula esterna al Dipartimento)
Sede

Dipartimento di Matematica, Università di Roma Tor Vergata

Aula esterna
Aula D'Antoni
Speaker
Ulrich Derenthal (Leibniz Universität Hannover)
Cubic hypersurfaces over the rational numbers often contain infinitely many rational points. In this situation, the asymptotic behavior of the number of rational points of bounded height is predicted by conjectures of Manin and Peyre. After reviewing previous results, we discuss the chordal cubic fourfold, which is the secant variety of the Veronese surface. Since it is isomorphic to the symmetric square of the projective plane, a result of W. M. Schmidt for quadratic points on the projective plane can be applied. We prove that this is compatible with the conjectures of Manin and Peyre once a thin subset with exceptionally many rational points is excluded from the count.
Contatti/Organizzatori
guidomaria.lido@gmail.com