Categoria:
Altro (categoria non censita)
Categoria non censita:
Seminario di Geometria e Teoria dei Numeri
Data e ora inizio evento:
Data e ora fine evento:
Aula:
Altro (Aula esterna al Dipartimento)
Sede:
Dipartimento di Matematica, Università di Roma Tor Vergata
Aula esterna:
Aula D'Antoni
Speaker:
Ulrich Derenthal (Leibniz Universität Hannover)
Cubic hypersurfaces over the rational numbers often contain infinitely many rational points. In this situation, the asymptotic behavior of the number of rational points of bounded height is predicted by conjectures of Manin and Peyre. After reviewing previous results, we discuss the chordal cubic fourfold, which is the secant variety of the Veronese surface. Since it is isomorphic to the symmetric square of the projective plane, a result of W. M. Schmidt for quadratic points on the projective plane can be applied. We prove that this is compatible with the conjectures of Manin and Peyre once a thin subset with exceptionally many rational points is excluded from the count.
Contatti/Organizzatori:
guidomaria.lido@gmail.com