Top-level heading

A quantitative result for the k-Hessian equation

Data e ora inizio evento
Data e ora fine evento
Aula
Sala di Consiglio
Sede

Dipartimento di Matematica Guido Castelnuovo, Università Sapienza Roma

We consider a symmetrization procedure for convex function in R^n that preserves mixed volumes of the sublevel sets, and for which a Pólya-Szegő type inequality holds. We will obtain a stability improvement for this Pólya-Szegő type inequality, bounding the Pólya-Szegő deficit in terms of the Hausdorff asymmetry index. This result allows us to prove a quantitative version of the Faber-Krahn and Saint-Venant inequalities for the k-Hessian equation, at least in the case when the aforementioned inequalities hold. Then, with similar arguments, we give a quantitative improvement of a comparison result proved by K. Tso for solutions to the k-Hessian equation with Dirichlet boundary condition.

Speaker ed affiliazione

Alba Lia Masiello (Università di Napoli Federico II)

Contatti/Organizzatori

galise@mat.uniroma1.it

Data pubblicazione evento