Top-level heading

The volume entropy rigidities for RCD spaces

Categoria
Altro (categoria non censita)
Categoria non censita
Conferenza "Curvature and Geometric Analysis in Rome" - Progetto Eccellenza, CUP B83C23001390001, Dipartimento di Matematica "Guido Castelnuovo", Sapienza Università di Roma. https://sites.google.com/view/cga-rome
Data e ora inizio evento
Data e ora fine evento
Aula
Aula Mauro Picone
Sede

Dipartimento di Matematica Guido Castelnuovo, Università Sapienza Roma

Speaker
Guofang Wei
The volume entropy is a fundamental geometric invariant defined as the exponential growth rate of volumes of balls in the universal cover. It is a very subtle invariant which has attracted extensive study. The fundamental rigidity results here are the maximal volume entropy rigidity result of Ledrappier-Wang and the minimal volume rigidity theorem of Besson-Courtois-Gallot. The latter is a far reaching generalization of various famous rigidity results such as the Mostow rigidity for hyperbolic manifolds. We will report on joint work with Chris Connell, Xianzhe Dai, Jesus Nunez-Zimbron, Requel Perales, Pablo Suarez-Serrato concerning the generalizations to RCD spaces of these rigidity results.
Contatti/Organizzatori
francesco.bei@uniroma1.it