We study the evolution in time of smooth sets in the n–dimensional flat torus, such that their boundaries, which are smooth hypersurfaces, move by surface diffusion flow (i.e. the H−1H−1 gradient flow...
We present recent results on the local in time well-posedness of stochastic thin-film equations driven by Gaussian noise, which is white in time and colored in space, with strictly positive initial da...
Nel 2007 Choe-Ghomi and Ritoré hanno provato una disuguaglianza isoperimetrica che afferma che a parità di volume, il minimo del perimetro relativo di un insieme E fuori di un convesso C si realizza q...
Abstract: We review some recent results from the mathematical theory of quantum transport of charge and spin in insulating crystals. The emphasis will be on transport coefficients, su...
Abstract: This talk addresses the challenges of designing high-order implicit schemes for systems of hyperbolic conservation laws, particularly in the context of stiff problems where wave speeds ...
Abstract: Quali sono i meccanismi che regolano la formazione di strutture ramificate di tipo frattale in natura? Questa domanda ha attratto nell'ultimo secolo l'attenzione di molti fisici, matematici ...
We consider solutions of semilinear equations on domains of the model spaces of constant curvature S^2, R^2 and H^2. Under suitable conditions on the domain, we prove uniqueness an...
Several interesting asymptotic properties of Hamilton-Jacobi equations are based on the so-called critical value of the Hamiltonian H(x,p) and on the associated critical stationary H-J equation. In pa...
The cutoff phenomenon is a now classical topic in probability, that consists in proving an abrupt convergence to equilibrium for a sequence of Markovian dynamics. Classical examples include card shuff...
Abstract:Oltre alla fisica e alla matematica, la Meccanica Quantistica ha rivoluzionato le esistenze degli uomini e delle donne, rendendo possibili dispositivi prima impensabili: le invenzioni del tra...
In 1927, Artin formulated his famous conjecture on primitive roots. The most basic question, which is still open, is as follows. For an odd prime number \(p\), we say that \(2\) is a primitive root mo...
Abstract: For a stochastically stationary Hamiltonian ODE in a Euclidean space, the set of periodic orbits yields a translation invariant random process. In this talk I will discuss an ergodic theorem...