Top-level heading

Some results for the large time behavior of Hamilton-Jacobi Equations with Caputo Time Derivative

Data e ora inizio evento
Data e ora fine evento
Sede

Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma

Aula
Sala di Consiglio
Speaker

Erwin Topp Paredes (Universidad de Santiago de Chile)

In this talk we present Hölder regularity estimates for an Hamilton-Jacobi with fractional time derivative of order α ∈(0,1) cast by a Caputo derivative. The Hölder seminorms are independent of time, which allows to investigate the large time behavior of the solutions. We focus on the Namah-Roquejoffre setting whose typical example is the Eikonal equation. Contrary to the classical time derivative case α=1, the convergence of the solution on the so-called projected Aubry set, which is an important step to catch the large time behavior, is not straightforward. Indeed, a function with nonpositive Caputo derivative for all time does not necessarily converge; we provide such a counterexample. However, we establish partial results of convergence under some geometrical assumptions.