Top-level heading

Deformation families of IHS varieties: classification problem and new examples

Categoria
Altro (categoria non censita)
Categoria non censita
Seminario di Geometria
Data e ora inizio evento
Data e ora fine evento
Aula
Altro (Aula esterna al Dipartimento)
Sede

Dipartimento di Matematica, Università di Roma Tor Vergata

Aula esterna
aula d'Antoni
Speaker
Valeria Bertini
A fruitful way to produce examples of IHS varieties is to consider terminalizations of symplectic quotients of symplectic varieties. In a work in collaboration with A. Grossi, M. Mauri and E. Mazzon we classify all terminalizations of quotients of Hilbert schemes of K3 surfaces and generalized Kummer varieties by the action of symplectic automorphisms induced by the underlying surface. Furthermore, we determine their second Betti number, the fundamental group of their singular locus and, in the Kummer case, we determine the singularities of their universal quasi-étale cover. Finally, we compare our deformation types with the examples known in literature, placing our work in the classification program proposed by Menet.
Contatti/Organizzatori
guidomaria.lido@gmail.com