We discuss a novel class of swarm-based gradient descent (SBGD) methods for non-convex optimization. The swarm consists of agents, each is identified with position, x, and mass, m. There are three key...
In this talk I will discuss some results about long time behaviors of solutions to Hamiltonian PDEs (Schrödinger, Kirchhoff, etc). In particular I will focus on a recent result where we (with J. Berni...
I will survey some results from the study of moduli spaces of higher dimensional varieties as well as the Hassett—Keel program for the moduli space of curves. I will then discuss applications of these...
In questo contributo si presenteranno alcuni risultati di un progetto di ricerca internazionale (IDENTITIES) sul tema dell'educazione all'interdisciplinarità tra matematica e fisica nella scuola secon...
Let G be a reductive connected group over an algebraically closed field of characteristic p . Of particular importance in the study of G is the set u(G) of unipotent conjugacy classes. It is known tha...
The Brauer group, classifying Azumaya algebras up to Morita equivalence, is a fundamental invariant in number theory and algebraic geometry. Given a moduli problem M (e.g. smooth curves of a given gen...
In occasione dell'evento internazionale May12 Celebrating Women in Mathematics, giornata internazionale delle donne nella matematica, l'Unità pianificazione, programmazione e Biblioteca Centrale e l'I...
Sia X una varietà di Fano liscia, complessa, di dimensione 4, e \(\rho(X)\) il suo numero di Picard. Inizieremo discutendo il seguente risultato: se \(\rho(X)>12\), allora X è un prodotto di superf...
Abstract: Constructing hyper-Kähler manifolds is a hard problem. Up to deformation, all the known examples are built from moduli spaces of stable sheaves on a K3 (or abelian) surface. It is natural ...
We are interested here in questions related to the maximal regularity of solutions of elliptic problems with Dirichlet boundary condition (see [1]). For the last 40 years, many works have been concern...