Top-level heading

Quasilinear elliptic problems with quadratic gradient term. Comparison principle and Gelfand problems

Data e ora inizio evento
Data e ora fine evento
Sede

Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma

Aula
Sala di Consiglio
Speaker ed affiliazione

Josè Carmona (Univérsidad de Almeria)

We review some recent results concerning with the existence of positive solutions of the following problem \begin{cases} \displaystyle -\Delta u +H(x,u,\nabla u)= \lambda f(u) \quad & \mbox{in}\,\, \Omega, \\ u=0 &\mbox{on} \, \partial \Omega, \end{cases} where f is a continuous nonnegative function in [0,+\infty) with f(0)>0 and H is a Carathédory function defined on \Omega\times [0,+\infty)\times \mathbb{R}^{N}. Specifically, we show how this problem provides a general framework to study Gelfand type problems. We give sufficient conditions to prove that there exists \lambda^*>0 such that the problem has a minimal solution u_\lambda provided that 0\leq \lambda<\lambda^* and no solution if \lambda >\lambda^*. We pay special interest in the extension of the classical stability condition as well as a general comparison principle.