Top-level heading

A global Weinstein splitting theorem for holomorphic Poisson manifolds

Categoria
Seminari di Algebra e Geometria
Data e ora inizio evento
Data e ora fine evento
Aula
Sala di Consiglio
Sede

Dipartimento di Matematica, Sapienza Università di Roma

Speaker

Frédéric Touzet (IRMAR Université de Rennes 1)

After reviewing some basic properties of holomorphic Poisson geometry, we will present a decomposition result in the Kähler case: if a compact Kähler Poisson manifold has a compact symplectic leaf with finite fundamental group, then after passing to a finite étale cover, it splits as the product of the universal cover of the leaf and some other Poisson manifold. This can be viewed as a global analogue to a theorem due to Alan Weinstein describing local Poisson structures. Joint work with Stéphane Druel, Jorge Pereira and Brent Pym.