Top-level heading

Kinetic scheme for non linear hyperbolic and parabolic problems: application to compressible flows (Part 2)

Categoria
Seminari di Modellistica Differenziale Numerica
Data e ora inizio evento
Data e ora fine evento
Aula
Altro (Aula esterna al Dipartimento)
Sede

Istituto per le applicazioni del calcolo, Via dei Taurini, 19

Aula esterna
Room 116
Speaker
Remi Abgrall (University of Zurich)
We present kinetic type methods able to approximate compressible type flow, with or without viscous and thermal effects. Many numerical example illustrate the methods and show effectiveness. The work is strongly inspired from [1,2,3,4,5]. [1] R. Abgrall and D. Torlo. Some preliminary results on a high order asymptotic preserving computationally explicit kinetic scheme. Communications in Mathematical Sciences, 20(2):297–326, 2022. [2] R. Abgrall and F. Nassajian Mojarrad. An Arbitrarily High Order and Asymptotic Preserving Kinetic Scheme in Compressible Fluid Dynamic. Communications on Applied Mathematics and Computation, (0123456789), 2023. [3] Gauthier Wissocq and Rémi Abgrall. A new local and explicit kinetic method for linear and non-linear convection-diffusion problems with finite kinetic speeds. I: One-dimensional case. J. Comput. Phys., 518:29, 2024. Id/No 113333. [4] Gauthier Wissocq and Rémi Abgrall. A new local and explicit kinetic method for linear and non-linear convection-diffusion problems with finite kinetic speeds. II: Multi-dimensional case. J. Comput. Phys., 516:27, 2024. Id/No 113376. [5] Gauthier Wissocq, Yongle Liu, and Rémi Abgrall. A positive- and bound-preserving vectorial lattice Boltzmann method in two dimensions. SIAM SISC, accepted, 2025. ArXiv 2411.15001.