Top-level heading

Boundary divisors in the moduli spaces of stable Horikawa surfaces with K2 = 2p g − 3

Data e ora inizio evento
Data e ora fine evento
Sede

Dipartimento di Matematica, Università di Roma Tor Vergata

Aula
Altro (Aula esterna al Dipartimento)
Aula esterna
Aula D'Anton
Speaker

Ciro Ciliberto (Università di Roma Tor Vergata)

In this talk I will describe the normal stable surfaces with K2=2pg−3 whose only non canonical singularity is a cyclic quotient singularity of type 14k(1,2k−1) and the corresponding locus DD inside the KSBA moduli space of stable surfaces. The main result is the following: for pg≥15, (1) a general point of any irreducible component of DD corresponds to a surface with a singularity of type 14(1,1), (2) the closure of DD is a divisor contained in the closure of the Gieseker moduli space of canonical models of surfaces with K2=2pg−3 and intersects all the components of such closure, and (3) the KSBA moduli space is smooth at a general point of DD. Moreover DD has 1 or 2 irreducible components, depending on the residue class of pgpg modulo 4. This is joint work with Rita Pardini.
Per informazioni, rivolgersi a: guidomaria.lido@gmail.com

Contatti/Organizzatori

guidomaria.lido@gmail.com