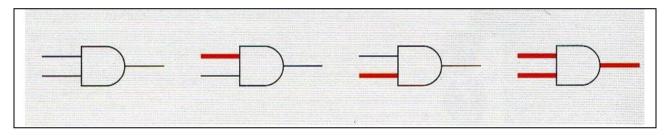
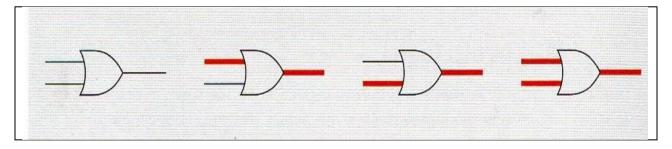
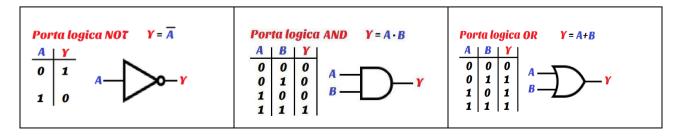
CIRCUITI LOGICI


Il matematico statunitense Claude Shannon, in un articolo del 1938 intitolato *Sintesi di circuiti di commutazione a due posizioni*, mostrò che <u>l'algebra della logica fornisce un modello matematico</u> valido non solo per i ragionamenti, ma anche <u>per particolari circuiti detti di commutazione</u> (o flip-flop). Essi infatti possono assumere solo due posizioni, che possiamo associare per convenzione ai due valori logici vero o falso. Per questo possono essere usati per assemblare dispositivi che effettuano operazioni sia logiche che aritmetiche, a patto di rappresentare i numeri con insiemi di valori binari (0 ed 1)


In altri termini si possono costruire dispositivi elettronici in cui i due possibili stati sono rappresentati da due situazioni ben distinte, come per esempio *passa corrente* o *non passa corrente*.

Una delle due situazioni verrà associata al valore "0" o "falso", l'altra al valore 1, o "vero". Tale dispositivo può manipolare le grandezze elettriche in modo da realizzare proprio un connettivo logico.

<u>FUNZIONAMENTO DI UN DISPOSITIVO AND</u>: i fili percorsi da corrente sono indicati in rosso; **nel filo di uscita passa corrente** se e solo se ne passa in **entrambi i fili di ingresso**



<u>FUNZIONAMENTO DI UN DISPOSITIVO **OR**</u>: **nel filo di uscita passa corrente** se ne passa in **almeno uno dei due fili di ingresso**

Ogni connettivo logico può essere realizzato, nella partica, utilizzando questi circuiti, detti porte.

Le porta che realizzano i connettivi logici di solito vengono rappresentate graficamente con questi simboli

A questi circuiti possiamo aggiungere dei sensori che misurano lo stato di una certa grandezza. Un'espressione logica può quindi rappresentare un circuito che collega i segnali dei diversi sensori e può dare come risultato un segnale elettrico che azionerà un dispositivo.

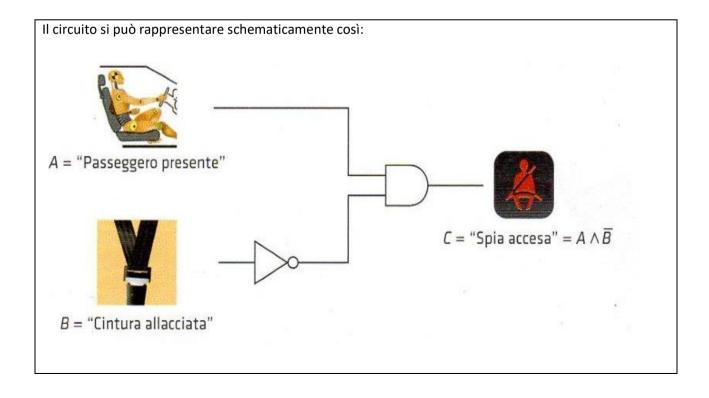
ATTIVITA' n° 1: la cintura è allacciata?

Consideriamo la spia che si accende sul cruscotto di un'auto quando il passeggero non ha allacciato la cintura di sicurezza e <u>progettiamo un modello che realizzi questa richiesta.</u>

Saranno necessari 2 sensori, uno che controlla se il passeggero è presente e uno che controlla se la cintura è allacciata.

Definiamo perciò 3 VARIABILI LOGICHE:

- A: "il passeggero è presente"
- B: "la cintura è allacciata"
- C: "la spia è accesa"


La condizione

"la spia è accesa SE E SOLO SE il passeggero è presente E la cintura NON è allacciata"

si scrive formalmente $C = A \wedge \overline{B}$

Completa la tabella di verità dell'espressione logica scritta sopra:

A = "passeggero presente"	B = "cintura allacciata"	C = "spia accesa" = $A \wedge \bar{B}$
V	V	
V	F	
F	V	
F	F	

ATTIVITA' n° 2: Sistema di allarme

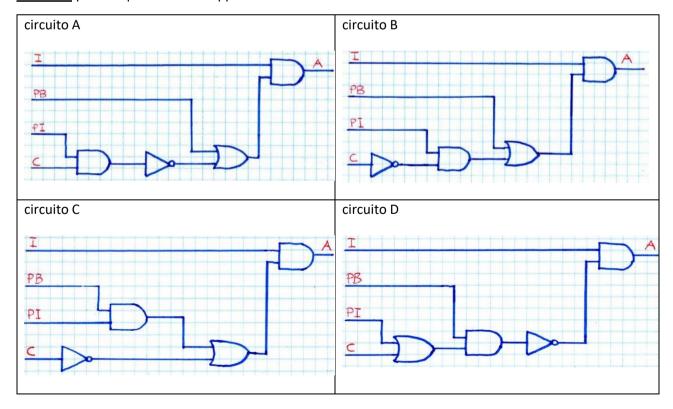
Una banca desidera installare un sistema di allarme che funzioni secondo le seguenti specifiche:

- deve essere in funzione solo se un interruttore principale presso la stazione di polizia è acceso
- quando è in funzione, deve suonare se la porta blindata viene disturbata in qualunque maniera, o se la porta di ingresso è aperta senza che la guardia giurata abbia inserito il codice di sicurezza.

Per costruire il modello del circuito richiesto, bisogna

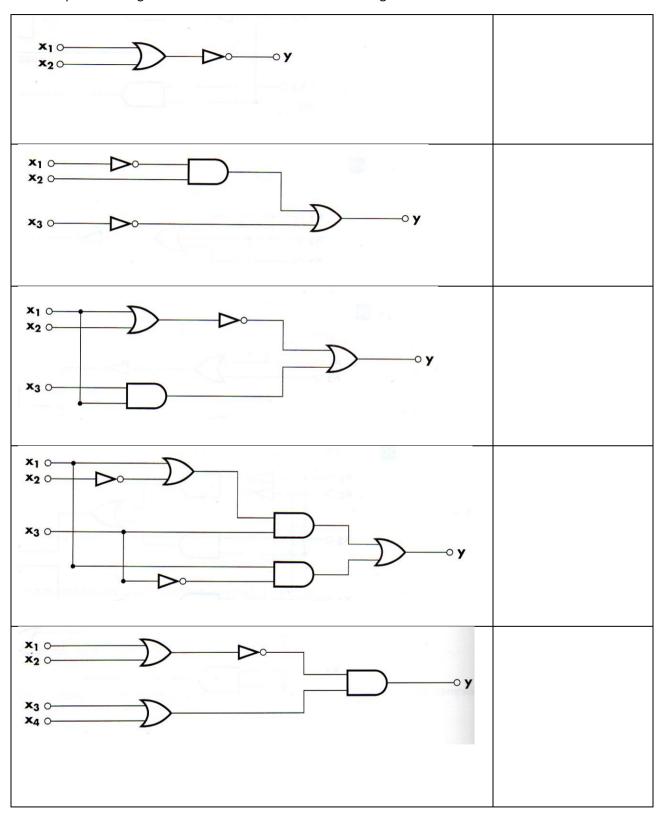
definire le variabili logiche necessarie legate alle grandezze su cui si basa il comportamento dell'allarme o alle azioni che il dispositivo deve compiere:

- I, interruttore della polizia (V se è inserito, F se non è inserito)
- PB, porta blindata (V in presenza di perturbazioni, F in assenza)
- PI, porta di ingresso (V se aperta, F altrimenti)
- C, codice di sicurezza (V se è stato inserito il codice corretto, F altrimenti)
- A, allarme (V se deve suonare, F altrimenti)

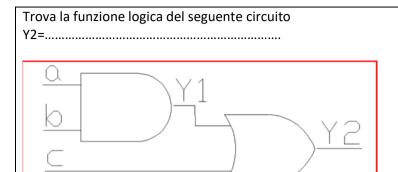

<u>Scrivere l'espressione logica che descrive il sistema di allarme significa esprimere la variabile A in funzione di I, PB, PI e C</u>

La richiesta della banca è questa:

«l'allarme deve suonare **SE E SOLO SE** l'interruttore della polizia è inserito **E** [la porta blindata è disturbata **O** (la porta della banca è aperta **E** il codice **NON** è corretto)]»


Si può tradurre così: $A = I \land [PB \lor (PI \land \overline{C})]$

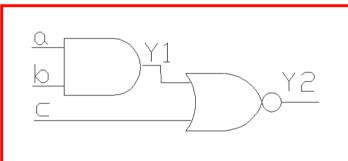
Stabilisci quale di questi circuiti rappresenta il funzionamento del sistema di allarme:



ATTIVITA' n° 3

Scrivi l'espressione logica che descrive il funzionamento dei seguenti circuiti:

ATTIVITA' n° 4

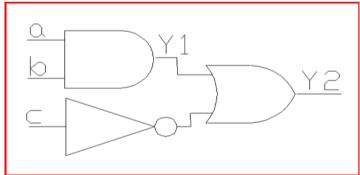


Compila la tavola di verità				
а	b	С	Y1	Y2
1	1	1		
1	1	0		
0	1	1		
0	1	0		
1	0	1		
1	0	0		
0	0	1		
0	0	0		

Costruisci il seguente circuito con il simulatore LOGISIM e verificane la correttezza confrontando la tavola di verità

Trova la funzione logica del seguente circuito

Y2=.....



Compila la tavola di verità				
а	b	С	Y1	Y2
1	1	1		
1	1	0		
0	1	1		
0	1	0		
1	0	1		
1	0	0		
0	0	1		
0	0	0		
0	0	0		

Costruisci il seguente circuito con il simulatore LOGISIM e verificane la correttezza confrontando la tavola di verità

Trova la funzione logica del seguente circuito

Y2=.....

а	b	C	Y1	Y2
1	1	1		
1	1	0		
0	1	1		
0	1	0		
1	0	1		
1	0	0		
0	0	1		
0	0	0		

Costruisci il seguente circuito con il simulatore LOGISIM e verificane la correttezza confrontando la tavola di verità

ATTIVITA' n° 5

Verifica mediante la costruzione dei rispettivi circuiti con il simulatore LOGISIM e mediante le rispettive tavole di verità la validità delle leggi di De Morgan

$$A \cdot B = \overline{A + B}$$

$$A + B = A \cdot B$$