Liceo Matematico

LA DIMOSTRAZIONE PER INDUZIONE /1

scheda di lavoro 7

La successione di Fibonacci gode di molte proprietà (alcune scoperte da poche decine di anni) e non ha senso stilarne un elenco esauriente. È però interessante riscoprire le più evidenti e imparare a dimostrarle formalmente.

- **7.1a)** Compila tutti i campi della tabella sottostante (\downarrow) , secondo le regole spiegate a fianco (\rightarrow) :
- Nella riga centrale va scritta la sottrazione tra il reciproco del numero di Fibonacci sovrastante e il reciproco del successivo
- Nell'ultima riga va calcolata esplicitamente la differenza, prestando attenzione a <u>non eseguire</u> il prodotto al denominatore

n	1	2	3	4	5	6	7	8	9
F_n	1	1	2	3	5	8	13	21	34
$\frac{1}{F_n} - \frac{1}{F_{n+1}}$		$\frac{1}{1} - \frac{1}{2}$	$\frac{1}{2} - \frac{1}{3}$	$\frac{1}{3} - \frac{1}{5}$					
Frazione (parzialmente) semplificata		$\frac{1}{1\cdot 2}$	$\frac{1}{2\cdot 3}$	$\frac{2}{3\cdot 5}$					

7.1b) Quale regolarità osservi delle frazioni dell'ultima riga? Cerca di scrivere la regola osservata in termini matematici:

$$\frac{1}{\mathcal{F}_{n}} - \frac{1}{\mathcal{F}_{n+1}} =$$

7.1c) Cerca di dimostrare l'uguaglianza scritta sopra utilizzando le proprietà dei numeri di Fibonacci.

7.2a) Compila tutti i campi della tabella sottostante (\downarrow) , secondo le regole spiegate a fianco (\rightarrow) :

- Nella riga centrale va inserito il prodotto tra il numero di Fibonacci sovrastante e il precedente.
- Nell'ultima riga va scritto il quadrato del corrispettivo numero di Fibonacci

n	1	2	3	4	5	
F_n	1	1	2	3 (-	
$F_{\scriptscriptstyle n-1}\cdot F_{\scriptscriptstyle n}$	\times	1	2	6	15	
$(F_n)^2$	1	1	4	9		
n	1	2	3	4	5	
F_n	1	1	2	3	5	
$F \cdot F$		1	2	6	15	

i......j

n	1	2	3	4	5	6	7	8	9
F_n	1	1	2	3	5	8	13	21	34
$F_{n-1} \cdot F_n$		1	2	6	15				
$(F_n)^2$	1	1	4	9	25				

7.2b) Guarda bene i numeri scritti nelle ultime due righe della tabella precedente: sussiste una relazione fra i quadrati $\left(F_{n}\right)^{2}$ e i prodotti $F_{n-1}\cdot F_{n}$ e $F_{n}\cdot F_{n+1}$ (*vedi tabella a destra*). Di che relazione si tratta? Sei in grado di esprimerla in termini matematici?

n	1	2	3	4	5	
F_n	1	1	2	3	5	
$F_{n-1} \cdot F_n$	X	1	2	6	15	
$(F_n)^2$	1	1	4	9	25	

7.2c) Cerca di dimostrare l'ultima relazione utilizzando le proprietà dei numeri di Fibonacci e osservando che l'espressione $A \cdot B - C \cdot A$ è equivalente a $A \cdot \left(B - C\right)$ (per convincersene basta effettuare il prodotto)

7.3a) Compila tutti i campi della tabella sottostante (\downarrow) , secondo le regole spiegate a fianco (\rightarrow) :

- Nella riga centrale inserisci i numeri di Fibonacci
- Nell'ultima riga (a sfondo bianco) scrivi la somma di tutti i numeri di Fibonacci elencati fino a quel punto (vedi esempio a fianco).

n	1	2	3	4	5	6	
F_n	1	1	2	3	5	8	
Somma di tutti i numeri di Fibonacci					12		

n	0	1	2	3	4	5	6	7	8	9	10	11
F_{n}	1	1	2	3	5	8	13	21	34	55	89	144
Somma di tutti i primi n numeri di Fibonacci												

3b) Cosa noti?	In che modo si può compilare l'ultima riga senza effettuare alcuna somma?

7.3c) Indicata con S(n) la somma dei numeri di Fibonacci da F_1 a F_n (per esempio $S(3) = F_1 + F_2 + F_3 = 1 + 1 + 2 = 4$), scrivi la proprietà osservata sopra in termini matematici.

7.4a) Cerchiamo ora di dimostrare il risultato appena trovato con un ragionamento detto "induzione matematica". Prima di tutto chiamiamo P(n) l'affermazione "S(n) è uguale a $F_{n+2}-1$ ". Si tratta di un **predicato**, cioè di una affermazione che dipende dal valore di una variabile. Così P(1) è l'affermazione "S(1) è uguale a F_3-1 ", P(2) "S(2) è uguale a F_4-1 " e così via.

Naturalmente, in linea di principio, il predicato P(n) può essere vero per alcuni valori di n e falso per altri. Il nostro intento è di dimostrare che P(n) sia vero per ogni $n \in \mathbb{N}$.

1 - Verifica del valore iniziale (BASE)

Che P(1) sia vero lo abbiamo visto compilando la tabella (nota bene: qualsiasi dimostrazione per induzione parte sempre dalla verifica di P(n) per uno o più valori iniziali).

(Ipotesi induttiva)

Dimostriamo ora formalmente la validità dell'implicazione logica $P(n) \Rightarrow P(n+1)$: si tratta cioè di provare che se P(n) fosse vero lo sarebbe anche P(n+1). Se invece P(n) fosse falso, P(n+1) potrebbe essere vero oppure falso, è un caso che semplicemente non ci interessa analizzare. È fondamentale capire che in questo ragionamento, P(n) deve essere assunto come vero (questa assunzione è detta **ipotesi induttiva**), non perché necessariamente lo sia, ma perché a noi interessa valutare gli effetti che questa ipotesi ha su P(n+1).

Supponiamo quindi che P(n) sia vera (cioè che per un certo n valga $S(n) = F_{n+2} - 1$) e analizziamo S(n+1), nella speranza che risulti vera anche P(n+1) (che corrisponde all'uguaglianza $S(n+1) = F_{n+3} - 1$).

2 - Dimostrazione dell'implicazione (PASSO INDUTTIVO)

Per definizione vale che $S(n+1) = F_1 + F_2 + ... + F_n + F_{n+1} = S(n) + F_{n+1}$. Per l'ipotesi induttiva $S(n) = F_{n+2} - 1$, per cui l'ultima uguaglianza diventa $S(n+1) = F_{n+2} - 1 + F_{n+1}$ che può essere

riscritto come $S(n+1) = F_{n+1} + F_{n+2} - 1$. Per le proprietà dei numeri di Fibonacci, $F_{n+1} + F_{n+2}$ è uguale a F_{n+3} , per cui abbiamo trovato $S(n+1) = F_{n+3} - 1$. Ma questa uguaglianza è proprio P(n+1)! L'implicazione logica $P(n) \Rightarrow P(n+1)$ è quindi dimostrata (in altre parole, "facendo finta" che P(n) sia vero, necessariamente lo sarà anche P(n+1)).

Cerchiamo di capire cosa abbiamo provato: se fosse vero P(7) sarebbe vero P(8), del resto se fosse vero P(8) lo sarebbe anche P(9) e così via fino all'infinito. A questo punto è bene ricordarsi un fatto fondamentale: che P(1) sia vero lo abbiamo verificato all'inizio. Riallacciando tutti i fili del discorso, abbiamo trovato che P(n) deve essere vero per ogni $n \in \mathbb{N}$, cioè effettivamente per ogni $n \in \mathbb{N}$ vale $S(n) = F_{n+2} - 1$.

7.4	b) Commenta la dimostrazione appena svolta: il ragionamento ti sembra convincente?

Le dimostrazioni per induzione, come quella appena vista, seguono tutte il seguente schema:

SCHEMA DELLA DIMOSTRAZIONE PER INDUZIONE (semplice)

TESI: P(n) è vero per ogni $n \in \mathbb{N}$

- 1) Si verifica la proposizione per uno o più valori iniziali (P(1), P(2), ...)
- 2) Si dimostra che vale l'implicazione $P(n) \Rightarrow P(n+1)$ (cioè si assume che per un certo $n \in \mathbb{N}$ P(n) sia vera e si arriva a concludere che dovrà esserlo anche P(n+1)).

Nota bene: è utile scrivere esplicitamente P(n+1) da qualche parte: in questo modo sarà più facile capire dove "indirizzare" la dimostrazione. Se P(n+1) è in forma di uguaglianza, si procede quasi sempre così: per prima cosa si scrive il membro di sinistra dell'uguaglianza e poi si costruisce una serie di identità, arrivando infine a un'espressione identica al membro di destra dell'uguaglianza di P(n+1).

Per fare ordine nelle dimostrazioni per induzione, è sempre bene rendere espliciti i predicati (e gli enunciati) P(n), P(1) e P(n+1). La seguente tabella è stata compilata con i dati dell'ultima dimostrazione.

Tesi: per ogni $n \in \mathbb{N}$ vale che P(n):

$$S(n) = \mathcal{F}_{n+2} - 1$$

P(1)

per un certo n vale P(n)

P(n+1)

$$S(1) = F_3 - 1$$

(da verificare)

$$S(n) = F_{n+2} - 1$$

(da assumere come vera)

$$\Rightarrow S(n+1) = F_{n+3} - 1$$

(da dimostrare)

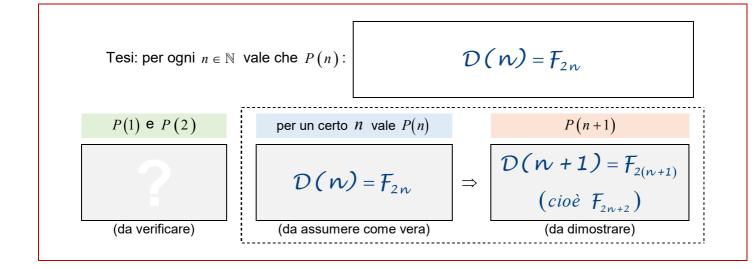
Molto spesso le uguaglianze scritte nei riquadri della TESI e dell'IPOTESI INDUTTIVA sono identiche (per differenziarle spesso si preferisce usare nei due casi lettere distinte), ma hanno premesse diverse che cambiano il loro significato: quello che si vuole dimostrare (TESI) è che la legge sia valida sempre (per ogni n), quello che invece si assume durante la dimostrazione (IPOTESI INDUTTIVA), è che la legge sia vera per uno specifico valore n (non per tutti).

7.4) Dimostra per induzione (e compilando la tabella delle dimostrazioni per induzione) la seguente proposizione: La somma dei primi n numeri di Fibonacci di indice dispari è uguale all' n -esimo numero di Fibonacci di indice pari (esempio: la somma di $F_1 + F_3 + F_5$ è F_6 , vedi in basso).

n	1	2	3	4	5	6	7	8	9	10	11	12
F_n	1	1	2	3	5	8	13	21	34	55	89	144
Somma celle grigie	1		3		8		21		55		144	

Consiglio: per non appesantire troppo la notazione, denotiamo con D(n) la somma dei primi n numeri di Fibonacci di indice dispari (per cui $D(n) = F_1 + F_3 + ... + F_{2n-1}$). Visto che l' n -esimo numero di Fibonacci di indice pari è ovviamente F_{2n} , la tesi dell'enunciato diventa semplicemente $D(n) = F_{2n}$.

Aiuto utile per la dimostrazione: l'n-esimo numero dispari è 2n-1 (per esempio il quinto numero dispari è $2 \cdot 5 - 1 = 9$), il numero dispari successivo sarà quindi (2n-1)+2, cioè 2n+1.



Dimostrazione del passo induttivo

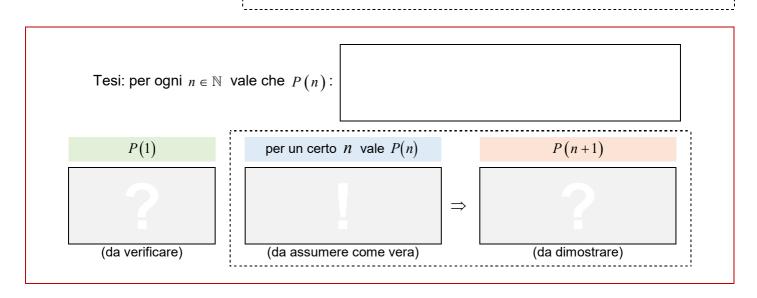
7.5) Dimostra per induzione (e compilando la tabella delle dimostrazioni per induzione) la seguente proposizione:

n	1	2	3	4	5	6	7	8	9	10
F_n	1	1	2	3	5	8	13	21	34	55
$(F_n)^2$	1	1	4	9	25	64	169	441	1156	3025
$Q_n^{ m Somma}$ di tutti i primi n quadrati dei numeri di Fibonacci	1	2	6	15	40	104	273	714	1870	4895

La somma dei quadrati dei primi n numeri di Fibonacci è uguale al prodotto tra l'n - esimo e l'n + 1 - esimo numero della successione (\leftarrow vedi a fianco).

Prima di iniziare la dimostrazione leggi bene i seguenti suggerimenti:

- i. Indica con Q(n) la somma dei quadrati dei primi n numeri di Fibonacci (cioè $Q(n) = F_1^2 + F_2^2 + ... + F_n^2$). Ciò ti consentirà di esprimere la tesi dell'enunciato nella forma compatta $Q(n) = (F_n)(F_{n+1})$.
- ii. Durante la dimostrazione sarà utile notare che $A \cdot B + B^2 = B \cdot (A + B)$ (facile da dimostrare calcolando il prodotto di destra)



Dimostra per induzione la se $^{-1}$	eguente proposizione: per ogni vale che $P(n)$:	$n \in \mathbb{N} \setminus$	/ale $F_n + 2 \cdot F_{n+1} = F_{n+3}$.	
<i>P</i> (1)	per un certo n vale $P(n)$		P(n+1)	
		\Rightarrow	?	
?				
(da verificare)	(da assumere come vera)		(da dimostrare)	
	!		(da dimostrare)	
(da verificare) Dimostrazione del passo ind	!		(da dimostrare)	

Tesi: per ogni $n \in \mathbb{N}$	vale che $P(n)$:	
P(1)	per un certo n vale $P(n)$	P(n+1)
?	\Rightarrow	?
(da verificare)	(da assumere come vera)	(da dimostrare)

Tesi: per ogni $n \in \mathbb{N}$	vale che $P(n)$:	
P(1)	per un certo n vale $P(n)$	P(n+1)
?	\Rightarrow	
(da verificare)	(da assumere come vera)	(da dimostrare)