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Euclidean QFT

Basic construction: Consider a functional S (action) on a space of fields.
Euclidean QFT boils down to constructing the measure

µβ(Dφ) = e−βS(φ) Dφ .

Above expression completely formal since Lebesgue measure Dφ on space of
fields makes no sense. Hope that it yields a well-defined probability measure by
some approximation procedure if S is coercive enough.

Interpretation as Gibbs measure for statistical mechanics model.

Example discussed today: Yang-Mills (d = 2, 3).
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Yang-Mills field theory

Setting (simplified): Fix compact Lie group G with Lie algebra g (structure
group). Fields: g-valued one-forms A on the torus Td (actually G-equivariant
connections on Td ×G).

Action S: L2-norm of curvature tensor

S(A) =

∫
∥FA(x)∥2 dx , FA

ij (x) =
(
∂iAj − ∂jAi

)
(x) + [Ai, Aj](x) .

Distinguishing feature: action of gauge group G = C∞(Td, G) onto A by

(g, A) 7→ Ag = gAg−1 − (dg)g−1 ,

such that FA (and therefore S(A)) is invariant under this action.
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Gauge invariance

Problem: The action functional S is flat in the (infinitely many) directions in
which G acts! There is no Lebesgue measure in infinite dimensions ⇒ hints that
there exists no measure on any space of equivariant connections that is invariant
under the action of G.

Good news: All physical observables A 7→ O(A) are gauge-invariant, namely
O(Ag) = O(A) for every g ∈ G. Wilson loops: for loop γ : [0, 1] → Td and class
function h : G → R, define Oγ,h(A) = h(γ̂(1)γ̂(0)−1) for γ̂ the horizontal lift of
γ to Td ×G.

Only need to build the measure µ on quotient space of gauge orbits.

Still: not clear how to build µ and what a good state space is.
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Some previous results

In 2D: Construction of Abelian YM field interacting with Higgs field by Brydges,
Fröhlich, Seiler (’79–’81). Joint law of Wilson loop observables for free Abelian
Yang–Mills by Gross, King, Sengupta (’89). Non-abelian case by Sengupta in
90’s, refined by T. Lévy and others in 00’s. Realised as measure on space of
(distributional) connections by Chevyrev (’19).

In 3D: Approach inspired by Feldman, Glimm–Jaffe, etc. Series of works by
Balaban, by Federbush, and by Magnen–Rivasseau–Sénéor (4D). No clear
understanding of what the state space and observables are. Candidate state
space by Cao–Chatterjee (’22).

(+ various results for G = O(N) with N → ∞, including recently from
probabilistic perspective: Shen–Smith–Zhu–Zhu, Driver–Gabriel–Hall–Kemp, etc)
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90’s, refined by T. Lévy and others in 00’s. Realised as measure on space of
(distributional) connections by Chevyrev (’19).

In 3D: Approach inspired by Feldman, Glimm–Jaffe, etc. Series of works by
Balaban, by Federbush, and by Magnen–Rivasseau–Sénéor (4D). No clear
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Stochastic quantisation

Proposed by Parisi & Wu ’81, earliest rigorous works by Jona-Lasinio & Mitter
’85.

Basic idea: Consider discrete approximation to Gibbs measure e−βS(φ) Dφ. This
is invariant for stochastic evolution

dφ = −∇S(φ) dt+
√

2/β dW ,

for W a Brownian motion with covariance structure adapted to the metric
determining the gradient ∇.

Hope: Maybe one can pass to the limit for the dynamic?
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Quantisation equation

In case of Yang–Mills, this procedure yields

∂tA = −d∗AFA + ξ = −d∗AdAA+
1

2
d∗A[A,A] + ξ ,

Not parabolic! DeTurck–Donaldson trick: adding dAH(A) formally preserves
dynamic on gauge orbits for any H. Choice H(A) = −d∗AA yields parabolic
system. (Removes −∂2

ijAj and changes l.o.t. in an inessential way)

Basic questions: interpretation of equation? State space? Gauge equivariance?
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Problem

Equation of the form

∂tA = ∆A+B(A,DA) + T (A,A,A) + ξ .

Solution to linear equation distribution-valued, so B and T meaningless a priori.

Natural approximation: replace ξ by ξε, smooth at scale ε. Heuristic arguments
suggest no convergence. Renormalisation needed, should be of the form

∂tAε = ∆Aε +B(Aε, DAε) + T (Aε, Aε, Aε)− CεAε + ξε .

Appears to break gauge equivariance! (But ξε does too, so maybe this can
magically cancel out?)
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Some results in 2D

Theorem (Chandra, Chevyrev, H., Shen, ’20): Can find Banach space Ωα

of distributional g-valued 1-forms and space Gα of Hölder continuous gauge
transformations such that:

1. For every fixed Cε = C, one has Aε → A in probability in C(R+,Ωα)
(modulo possible blow-up).

2. Smooth connections dense in Ωα and quotient space Oα = Ωα/Gα is Polish.

3. Wilson loop observables continuous on Ωα and G-invariant.
4. Unique choice of C (but depending on smoothening of ξ!) such that the

quotient process is Markov on Oα.

5. The process A on Oα admits at most one invariant measure.

Conjecture: The process A has an invariant measure which coincides with the
measure constructed by Sengupta, Lévy & al.
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Problems in 3D

Some problems when trying to extend this to 3D:

1. Explicit expression for Cε intractable which is problematic for uniqueness
argument. (Cε ∼ c1/ε+ c2 log ε+ c3 with c2 intractable.)

2. Wilson loop observables not expected to exist. (Blow up already for Abelian
case, cannot restrict free field to smooth line in 3D.)

3. Limiting process A belongs to Cβ for β < −1
2
, but even solutions to

deterministic Yang-Mills heat flow only exist for all i.c. in Cβ when β > −1
2
.

4. Natural gauge transformations associated to Cβ are of regularity β + 1
(because of the term (dg)g−1) but Gβ+1 acts continuously on Cβ if and only
if β > −1

2
.
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deterministic Yang-Mills heat flow only exist for all i.c. in Cβ when β > −1
2
.

4. Natural gauge transformations associated to Cβ are of regularity β + 1
(because of the term (dg)g−1) but Gβ+1 acts continuously on Cβ if and only
if β > −1
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Partial result in 3D

Theorem (Chandra, Chevyrev, H., Shen, ’21): Can find (non-linear) metric
space S of distributional g-valued 1-forms such that

1. There exists a choice of Cε such that Aε → A in probability in C(R+,S)
(modulo possible blow-up).

2. Smooth connections dense in S.
3. YM heat flow well-posed on S ⇒ natural notion of gauge equivalence.

4. Unique choice of Cε (modulo sequence converging to 0) such that A
satisfies suitable notion of gauge equivariance.

Remark: Space S included in the state space of Cao–Chatterjee.
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Some open questions

• Long-time control of solutions?

• Link to lattice gauge theories?

• Renormalised Wilson loop observables in 3D?

• Polish space of gauge equivalence classes in 3D?

• Are gauge equivalence classes in 3D the orbits of a group action?

Happy Birthday Gianni!!
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