Medical Applications of radiation physics

Riccardo Faccini Universita' di Roma "La Sapienza"

Outlook

- Introduction to radiation
 - which one?
 - how does it interact with matter?
 - how is it generated?
- Diagnostics and nuclear medicine:
 - Diagnostics (radiography, SPECT, PET,...)
 - Molecular radiotherapy
 - Radio-guided surgery
- Particle beams in medicine
 - Radiotherapy
 - hadrotherapy

Introduction to radiation

<u>Which one ?</u> How does it interact with matter? How is it generated?

AT'S

Introduction to radiation

Which one ? <u>How does it interact with matter?</u> How is it generated?

ATE

Radiation of interest

Neutral particles:

High penetration before interacting Gamma rays: produce electrons <u>Neutrons</u>: produce low energy protons → more "aggressive"

positrons: positrons for annihilate with e- and produce 2 photons that escape patient and interact outside

Other charged particles (electrons, protons, ions): low penetration, short path, depending on energy

gamma- matter interactions

Gamma rays

- Photoelectric effect
 - Emission of electron with same energy as impinging photon
- Compton scattering
 - Only part of the energy is transferred to an electron
 - → photon "remnant" with lower energy and different direction

- Pair production $\gamma\gamma \rightarrow e^-e^+$ (only if $E_{\gamma}>2m_e$)

gamma-matter interactions (II)

A photon survives unchanged until it interacts \rightarrow then it transforms

Photon beam attenuates exponentially

µ=coefficiente di attenuazione σ=sezione d'urto n= # atomi per unita' di volume

 $N(x)=N(0)e^{-\mu x}=N(0)e^{-n\sigma x}$

Charge particles-matter interactions

Dominant interaction: ionization

Continuous release of until particle stops

incident electron

inelastically scattered electron

Multiple scattering

- Particles can also scatter on nuclei:
 - No energy loss
 - Angular deviation
- When traversing a thick material multiple scatterings occur

In 80% of the cases there are two backto-back mono-energetic photons Introduction to radiation

Which one ? How does it interact with matter? <u>How is it generated?</u>

at e

Accelerators: LINAC

Used in medicine for electrons up to few MeV

Accelerators: working principle

Accelerators: CYCLOTRON

- Used to accelerate protons/ions
- 10-30 MeV for radio-isotope production
- Up to 200 MeV for radio-therapy

Accelerators: syncrotrons

Accelerate protons/carbons for therapy up to 4800 MeV

Decadimenti nucleari

Possiamo classificare i diversi modi di emissione radioattiva di un nucleo instabile nel seguente modo:

•Interazione nucleare forte

- •Radioattività α
- •Radioattività da protoni o neutroni differenziati
- •Fissione spontanea

•Interazione nucleare debole

- •Radioattività β
- •Cattura elettronica (EC)

•Interazione elettromagnetica •Isomeria nucleare

Radio-isotopes

Unstable nuclei that decay

Produced:

- by strong reactions (bombardment of stable nuclei with protons)
- as remnants from reactors

Diagnostics and Nuclear Medicine

Diagnostics (radiography, SPECT, PET,...) Molecular radiotherapy Radio-guided surgery

ATE

Diagnostics

- Two major categories:
 - Morphologic: sensitive only to densities
 - Radiography
 - TAC
 - ultrasound, ...
 - Functional: sensitive to organ functionalities
 - PET
 - · SPECT

Diagnostics: radiography

- X-rays produced with a cathodic tube by Bremsstrahlung
- Interaction between matter and patient

X-rays

X-ray detection

Radio-nuclides for imaging

- Administer, to patient (either systemically or locally) a drug which:
 - the tumor/organ of interest takes up significantly more than the rest.
 - is linked to a radio-nuclide that emits particles via nuclear decay
- Wait for the drug to diffuse
- Measure the emitted radiation and
 D obtain information

Diagnostics: SPECT

Single Photon Emission Computerized Tomography

- Inject radionuclide (typically ⁹⁹Tc but also ¹³¹I)
- Decays with single photon
- Detection ~50cm from source with anger camera

Gamma decays

Detection principle

Diagnostics: PET

Positron Emission Tomography

- Inject radionuclide (¹⁸F in FDG, FET, 11C in methionine, choline)
- β + decay
- Detect the two gammas in coincidence outside patient

Beta+ decays

Radio-guided surgery

- Administer, before operation to patient (either systemically or locally) a drug which:
 - the tumor takes up significantly more than the healthy tissue.
 - is linked to a radio-nuclide that emits particles via nuclear decay
- Wait for the drug to diffuse to the margins of the tumor
- Start operation
 - Remove the bulk of the tumor
 - Verify with a probe that detects the emitted particles the presence of:
 - Residuals
 - Infected lymph nodes

Radioguided surgery

Three approaches

- Gamma: well established, e.g. sentinel lymph-node
- Beta+: based on the dual probe approach
- Beta-: future fronteer

98 px Y: 127 px Value: 25.03

mm Y: -0.46 mm Z: -153.40 mm

robe

LIMITS OF γ -RGS

140 keV photons

→ attenuation in body ~8cm

Long range of gamma's involve:

- exposure of medical personnel
- Background from healthy organs

Difficult to apply in:

- Brain tumors
- Abdominal tumors
- Pediatric tumors

A CHANGE IN PARADIGM

- Use of β^- tracers (electrons): pros
 - Detect electrons that travel ~100 times
 less than γ
 - Tracers with ⁹⁰Y can be used (already used for Molecular RT)
 - No background from gamma
 - Shorter time to have a response
 - » Smaller administered activity
 - Smaller and more versatile detector
 - reduced effect of nearby healthy tissues
 - Reduced dose to medical staff

NOTE: only detection at contact is possible

EXTEND RGS TO MORE CLINICAL CASES E. Solfaroli Camillocci et al, Sci. Repts. 4,4401 (2014)

The probe prototype

Compact, easy to handle, local measurement

Simple technology:

- scintillating crystal
- Light sensor (SiPM)

Most stringent constraints:

- **Mechanics**
- electrical safety
- sterilization

Ongoing R&D:

- Detector improvements to lower energy threshold
- Laparoscopic application (adjustment in size, multiple reading for information from the side)

RESEARCH PATH

E. Solfaroli et al., submitted to JNM

Ex-vivo test on meningioma

• PET with Ga68 on Sep 14th

- Tumor SUV ~2g/ml (relatively low, but enough)
- TNR ~ 14 (good)

- 8mCi Y90—DOTATOC on Oct 9th
- Surgery on Oct 10th

Sample	''Diagnosis''
А	non-infiletered dura
В	Tumor upper margin
С	Tumor lower margin
D	Tumor Bulk
E	Medial dural border
F	Tumor center
G	Tumor center

The Samples

Evaluating the samples rate

Results

- Residuals as small as 0.2ml are visible
- Predictions with simulation are reliable (115 cps predicted, 105 observed)
- Healthy brain ~1cps (simulation) infiltrated dure can be identified

+ Confirmed very low exposure of medical personnell

Sample	V(ml)	R(cps)	histology	
Α	0.38	5.0	Dural tissue	
			infiltered by meningioma	
В	0.23	51.5	Transitional meningioma	
С	0.72	45.0	Transitional meningioma	
D	4.84	105.0	Transitional meningioma	
\mathbf{E}	0.88	3.5	Dural tissue infiltered by meningioma	
\mathbf{F}	0.21	27.7	Transitional meningioma	
G	0.39	39.3	Transitional meningioma	
			with micronecrosis and occasional mitosis	

β^+ RGS: different isotopes

- ¹⁸F not the only tracer
- Mean β^+ energy critical parameter
- Each tracer has different clinical applications

Isotope	Half-life	β^+ Energy (MeV)
C-11	20.4 m	0.385 (99.8%)
N-13	9.97 m	0.492 (99.8%)
O-15	122 s	0.735 (99.9%)
F-18	110 m	0.250 (100%)
K-38	7.64 m	1.216 (99.3%)
Cu-62	9.74 m	1.315 (97.6%)
Cu-64	12.7 h	0.278 (17.9%)
Ga-68	68.1 h	0.83((87.9%) 0.352 (1.12%)
Rb-82	75 s	1.523 (\$3.3%), 1.157 (10.2%)
I-124	4.18 d	0.686 (11.3%), 0.974 (11.3%)

$\beta^{\scriptscriptstyle -}$ probe on $\beta^{\scriptscriptstyle +}$ isotopes

- Positron/γ separation with copper layers
- Results scaled to 10kBq/ml

10 kBq/ml	¹⁸ F	⁶⁸ Ga
Counts no shield (e+γ)	11.9±0.3	51.2±0.8
Counts with Cu shield (γ)	3.0±0.1	1.7±0.1
Difference (e)	8.9±0.3	49.5±0.8

β- RGS: Other isotopes (I)

used in Nucl. Med.

Isotopes of those used in Nucl. Med.

Same chem family of those used in Nucl. Med.

lsotope	T _{1/2} (h)	E _g (keV)	l _g (%)	EP _b (keV)	I _b (%)	Use
¹⁸ F	1.8	511	200	633.5	97	FDG, most tumors
²¹ Si	2.6			1491	100	Same family as C (used in PET)
³² P	343			1710	100	Brain tumors [1]
⁶⁷ Cu	62	93/184	16/48	377/468/561	22/20/99	Cu-64 in immuno-PET[3]
⁸³ Br	2.4			935	99	Same family as F
⁹⁰ Y	64			2280	100	NET & Brain tumors[1]
⁹⁷ Zr	17	743	93	759	88	⁸⁹ Zr used in immuno-PET [2]
¹³¹	192	365/637	82/7	334/696	7/90	Thyroid[1]
¹³³	20.8	530	87	1227	83.4	Thyroid
¹⁵³ Sm	46	103	29	635/704/808	31/49/18	Bone Cancer[1]
¹⁷⁷ Lu	160	112/208	6/10	500	79	NET & Brain tumors[1]
¹⁸⁸ Re	17	155	15	1962/2118	25/72	Bone & Liver [2] Cancer

[1] Review in Yeaong C.H. et al. J. Zhejiang Univ. SCIENCE B Vol.15 No.10 P.845-863 (2014)
[2] van de Watering F.C. et al. Biomed Res Int. 2014;2014:203601.
[2] A. J. H. A. N. et al. Di M. J. D. L. J. 79(4(2)(2014))

[3] Asabella A.N. et al. BioMed Res. Intl. 786463 (2014)

C. Mancini-Terracciano et al., arXiv:1610.09246

β - RGS: Other isotopes (II)

E_g(keV) I_g(%) I_b(%) EP_b(keV) T*_{min} Isoto (s) pe ¹⁸F 511 200 633.5 97 >25 ²¹Si 1491 100 0.4 ³²P 100 0.3 1710 ⁶⁷Cu 16/48 22/20/99 93/184 377/468/561 >25 ⁸³Br 935 99 0.9 90**Y** 2280 100 0.5 ⁹⁷Zr 0.8 743 93 759 88 131 365/637 82/7 334/696 7/90 >25 ¹³³ 2.8 530 87 1227 83.4 ¹⁵³Sm 635/704/808 31/49/18 3.1 103 29 ¹⁷⁷Lu 112/208 6/10 500 79 >25 ¹⁸⁸Re 1962/2118 25/72 0.4 155 15

* Time needed to detect a 0.1 ml residual with FN<5% FP<1% if 3MBq/kg are administered and SUV=4, TNR=8

OK with current probe

High SUV and TNR required: improvements in γ rejection and energy threshold useful

Significant improvements in γ rejection and energy threhold required

Extension to other tumors: new tracers

Mark existing tracers with Y90 or other beta- emitters. Examples of ongoing studies:

• Monoclonal antibodies

(NIMOTUZUMAB) for EGFR receptors

• MIBG

Development of nano-scale carriers composed of polymers, antibody and ittrium

From conventional to Hadrotherapy

A

Radiotherapy

Goal:

 Deliver energy on tumor cells in order to break them in an irreparable way

Large dE/dx → DNA breaks irreparably

Moderate dE/dX → chemical reaction due to free radicals

Conventional radiotherapy

Large release of energy outside tumor

Radiotherapy LINAC

How a Linac Works

Radiation therapy begins with a linear accelerator, which speeds electrons toward a target to generate a radiation beam aimed at the patient's tumor. The multileaf collimator shapes the radiation beams and varies their intensity. This enables physicians to target higher radiation doses to the tumor while sparing healthy tissue.

A computer system uses threedimensional images of the tumor and surrounding anatomy to optimize a treatment plan for delivering radiation according to the oncologist's specifications. The radiation beam is precisely tailored to the shape of a patient's tumor. This shape changes as radiation is delivered from different angles, so that the tumor is always targeted and healthy tissues are protected.

Hadrontherapy

Comparison ¹²C vs IMRT

Better confinement of energy release

More effectiveness in killing cells

Accelerators

Required proton/Carbon energy

Proton Kinetic Energy between 100-250 MeV Carbon Kinetic Energy between 200-400 MeV/u

Accelerators for hadrotherapy

therapy with protons (~ 200 MeV)

CYCLOTRONS (Normal or SC)

SYNCHROTRONS

therapy with carbon ions (~ 4800 MeV)

Present of hadrotherapy

USA - 9 centres Japon - 8 centres Allemagne - 5 centres France - 2 centres Italie - 1 centre Suisse - 1 centre Taïwan - 1 centre Chine - 1 centre Corée du Sud - 1 centre

HT: Monitoring the dose

 Why is so crucial to monitor the dose in hadrontherapy ? Is like firing with machine gun or using a precision rifle..

Effect of density changes in the target volume

Measuring the dose

Based on nuclear reactions between the projectile and the patient

radiomethabolic/Brachithera py

- Inject/ position radionuclide (e.g. 1311)
- Beta- decays
- Electrons release energy in tumor locally

PHYSICS IS BEAUTIFUL AND USEFUL

(U. Amaldi)

