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Classical Galois theory of algebraic equations has been extended to a Galois theory of linear
differential equations [vS03] and more recently to the Galois theory of various kind of linear differ-
ence equations [vS97, DV21]. Apart from an intrinsic interest, the Galois theory of linear difference
equations has been proven to have surprising applications in many different domains.

First, | will start giving an introduction to the Galois theory of linear differential equations. Then |
will continue presenting the Galois theory of linear functional equations and some of its applications,
that have been the object of recent publications. The interactions between combinatorics, probability
and Galois theory of functional equations is very promising: Many problems are still open and for
this reason | think that it is a good subject for a post-graduate class.

Here is a selection of applications that may be of interests for the audience of these lessons:

Differential transcendence of solutions of linear difference equations. In the spirit of Holder’s
theorem, which says that the Gamma function is differentially transcendental over the rational func-
tions (i.e., it is not solution of an algebraic differential equation with rational coefficients), there are
several results on the fact that solutions of linear difference equations cannot be solutions of alge-
braic differential equations and viceversa. There have been several works in this directions in the
last 30 years, culminating in the very general theorem [ADH21, Thm. 1.2]. The latter can be express
in quite simple terms (in 3 of the 4 cases considered in /oc.cit.) as follows:

Theorem 1 Let f € C((t)) be a Laurent series satisfying a linear functional equation of the form
apy +a17(y) + -+ ant"(y) =0,

where «; € C(t), not all zero, and T is one of the following operators:

C () =1 (vh):
« 7(f(t)) = f (qt) for some q € C*, not a root of unity;
« 7(f(t)) = f (t"™) for some positive integer m.

Then either f € C(t'/") for some positive integer r, or f is differentially transcendental over C(t).
Moreover, in the case of the first operator, r is necessarily equal to 1.

To present the proof of this theorem, I'll need to introduce the so called linear differential groups a
la Kolchin. Very roughly they are subgroups of G L,, defined by an ideal of differential polynomial.
The definition is reminiscent of the theory of linear algebraic group, but quickly the theory develops
in unexpected directions.

Klazar’s theorem on Bell humbers, Yeliussizov-Pak conjecture and strong differential tran-
scendence. In [KIa03], Klazar considers the ordinary generating function (OGF) of the Bell num-
bers ¢(t) := 1+ 2@1 ont™, where ¢,, is the number of partitions of a set of cardinality n > 1, and



proves that ¢(¢) is differentially transcendental over the field C({¢}) of the germs of meromorphic
functions at 0. To do so, he uses a functional equation satisfied by ¢(t), namely:

t
— | =top(t) + 1. 1
o (157) =to+ )
A classical and important property of the Bell numbers is that their exponential generating function
(EGF)
o ¢” n
=1+ Tt
n>1
satisfies R
(t) = exp(expt — 1). 2)

Starting from the example of the Bell numbers, Pak and Yeliussizov formulated the following
ambitious conjecture as an “advanced generalization of Klazar’s theorem”:

Conjecture 2 ([Pak19, Open Problem 2.4]) If for a sequence of rational numbers (a,,)n>0 both or-
dinary and exponential generating functions 3, <, ant™ and - ant; are D-algebraic, then both
are D-finite (equivalently, (a,)n>0 satisfies a linear recurrence with polynomial coefficients in Q[n]).

In [BDVR24] A. Bostan, K. Raschel and myself have proved that all OGF whose EGF is defined
by a “closed exponential form”, similar to (2), satisfy a linear T-equations for the operator 7(f(t)) =

f <1+t> We produced a long list of known special EGF of this kind from the classical literature. In

particular many of them satisfy an equation of order one with an inhomogeneous term, as in (1):
We prove that they are differentially trasncendental over C({¢}). This provides a long list of special
series that confirms the conjecture above.

Applications to the study of the nature of Green functions on self-similar graphs. In collabo-
ration with G. Fernandes and M. Mishna [DVFM23], we have proved the following results. We define
the following field endomorphism of C((¢)):

(I)R antn'_)f an )

where R satisfies:

(R) R(t) € C(t), R(0) =0, R'(0) € {0,1,roots of unity},
but no iteration of R(t) is equal to the identity.
Our first main theorem is:

Theorem 3 Let R(t) satisfy assumption (R). We suppose that there exist a,b € C(t), and f €
C((t)) such that f(R(t)) = a(t)f(t) + b(t). Then either f is differentially transcendental over C(t)
or there exists a, B € C(t) such that ' = af + 5.

For particular choices of a and b we obtain stronger results, namely:

Theorem 4 Let R(t) satisfy assumption (R ). We suppose that there exists b € C(t) and f € C((t))
such that f(R(t)) = f(t)+b(t). Then either f € C(t), or f is differentially transcendental over C(t).

and:

Theorem 5 Let R(t) satisfy assumption (R). We suppose that there exist f € C((t)) anda € C(t),
such that f(R(t)) = a(t) f(t). Then either f is algebraic over C(t) and there exists a positive integer
N such that fN € C(t), or f is differentially transcendental over C(t).



As an example of applications, we present the result for Sierpinski graph, but similar conclusions
are true for the entire class of symmetric self-similar graphs, as described by B6hn and Teufl [KT04].

The Sierpinski graph results from a fractal generating process starting with a single line, itera-
tively rewritten and rescaled in particular way. More precisely, one starts with a unit line, Sp = __
and applies the following replacement rule:

IS Vi 3)

in an iterated process. Figure 1 demonstrates the first few iterates. The Sierpiriski graph is the limit
of this process.
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Figure 1: Initial iterates defining the Sierpinski graph.

The Green function of a graph is a probability generating function which describes the n-step
displacement starting and returning to a certain origin vertex. The Green function of symmetric self-
similar graphs satisfy homogeneous iterative equations,

G(R(t)) = a(t)G(?)

with algebraic (often rational) R and rational a. Roughly, the substitution ¢t — R(t) has a combina-
torial interpretation reflecting the self-similarity of the graph [KT04]. As the graph is 4-regular, G(4t)
is the generating function for walks that begin and end at the origin on the Sierpinski graph. These
walks are also known as excursions on the graph. The series begins:

G(4t) = 1+ 4% + 4¢3 + 32¢* + 76t° + 3485 + 1112¢7 + O(1%).

Figure 2 illustrates an example excursion.

0

Figure 2: A close up on the origin (labelled o) of the Sierpinski Graph. The (red) path in bold is one
of the 32 excursions of length 4.

Grabner and Woess [GW97, Proposition 1] proved that the Green function G(t) for walks that
return to their origin on the Sierpinski graph satisfies the functional equation

2\ (241t)(4-30)
G<4—3t> = arne_pn ¢ @

We apply Theorem 5 to G(t).

Theorem 6 The Green function G(t) of walks that start and end at the origin on the infinite Sierpinski
graph is differentially transcendental over C(t).

In light of Equation (4), to prove Theorem 6, it suffices to show that G(¢) is not algebraic. Grabner
and Woess in loc.cit. show that the coefficient of ¢ in G(t) grows asymptotically like

n—log3/log 5F(log n/log5)



as n goes to infinity, for some nonconstant periodic function F'. The constant — log 3/ log 5 is related
to the fractal dimension of the underlying structure. Since the exponent of n is not rational, G(¢) is
not algebraic (see [FS09, Theorem VI1.8]), hence it is differentially transcendental.

Similar functional equations appears in enumerative problems for complete trees and pattern
avoiding permutations. Those results have been further generalized in [KM24].
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