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Introduction

p-Laplacians and applications

p-Laplacian and ∞-Laplacian operators enter in many mathematical
problems and models for applications:

Classical problem of Calculus of Variations such as the continuous
extension of a given function

Engineering mechanics: minimization of maximum stress or deflection

Image processing (edge detection) and interpolation (inpainting)

Granular materials: models for growing sandpiles can be derived as
limits of fast/slow diffusion problems in terms of p-Laplacians

Stochastic game theory: random-turn games can be used in
economical and political modeling, real world conflicts where
opposing agents continually seek to improve their positions through
incremental tugs, the move sets are player-symmetric but independent
of what the others do.
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Introduction Variational p-Laplacians and p-harmonic functions

Variational p-Laplacians and p-harmonic functions

Definition

∆p u := div
(
|∇u|p−2∇u

)
, (1 ≤ p <∞)

∆∞u :=
∑
i ,j

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
.

They are degenerate elliptic for 2 < p ≤ ∞, and singular for 1 ≤ p < 2.

A p − harmonic function in a bounded domain Ω will be a weak solution
of the equation

∆pu = 0 , (1)

that is a continuous function in the Sobolev space W 1,p
loc (Ω) such that∫

Ω
|∇u|p−2(∇u,∇φ)dx = 0, ∀φ ∈ C∞0 (Ω)
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Introduction Variational p-Laplacians and p-harmonic functions

Given p > 1, a bounded domain Ω and a continuous F : ∂Ω→ IR, solving
the p − Dirichlet problem

−∆pu = 0 in Ω, u = F on ∂Ω, (2)

means to find a continuous extension u : Ω→ IR of F which is
p-harmonic, that is a function u that minimizes the energy functional∫

Ω |∇u|pdx subject to the given boundary condition.

For p =∞, given a Lipschitz function F : ∂Ω→ IR, the solution of

−∆∞u = 0 in Ω, u = F on ∂Ω, (3)

is a Lipschitz extension of F to Ω. It can be proven that it is also a
minimal extension of F (LipΩu = Lip∂Ωu) and an absolutely minimal
extension (LipUu = Lip∂Uu ∀U ⊆ Ω)

As p →∞ the p-harmonic extensions of F converge to the solution of (3)
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Introduction Variational p-Laplacians and p-harmonic functions

Due to the degeneracy of the problem, the notion of viscosity solution
is needed.

For the variational p-Laplacian (1 < p <∞), viscosity solution and
weak solution are equivalent [Juutinen et al. ’01].

If F ∈W 1,p(Ω), there exists a unique p-harmonic function u in Ω
such that u − F ∈W 1,p

0 (Ω), and u minimizes
∫

Ω |∇u|p among all

v ∈W 1,p(Ω) such that v − F ∈W 1,p
0 (Ω) [Heinonen et al. ’93].

There exists a unique viscosity solution for problem (3) [Jensen ’93,
Barles-Busca ’01, Aronsson-Crandall-Juutinen ’03] .

The following regularity result holds [Di Benedetto, ’83]:
If u is p-harmonic in Ω, then it is everywhere differentiable in Ω and
real analytic whenever ∇u 6= 0. Moreover, u has a Holder continuous
gradient, that is u ∈ C 1,γ(Ω) for some γ > 0.

In general, solutions are not twice differentiable:
u(x , y) = |x |4/3 − |y |4/3 is an example of an absolute minimizer in the
square Ω = (−1, 1)2 (it solves (3) and is not C 2). [Aronsson, ’67]
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Introduction Game theory framework and game p-Laplacians

Game interpretation

In the classical case (p = 2) the Dirichlet problem (2) can be solved
by starting a Brownian motion B at x , running it until the hitting
time τ of the boundary, and taking u(x) = Ex [F (B(τ))].
The brownian motion can be derived as the continuum limit of
random walks in Ω when the step lenght goes to zero.

A similar interpretation can be given to the associated
non-homogeneous problem (−∆u = f in Ω) if we think to f as a sort
of running cost for the random walk.

Analogous interpretations are possible for the p-harmonic extensions
in terms of the continuum limit of the values of certain games:

I p = 1: minimum exit time problem
I p =∞: tug-of-war game
I 1 < p <∞: tug-of-war with noise
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Introduction Game theory framework and game p-Laplacians

Motion by mean curvature (p = 1) [Kohn-Serfaty, ’06]

The equation for motion of level sets by mean curvature can be interpreted
in terms of the following deterministic two player game. Let Ω ∈ IR2,
x ∈ Ω.

Player 1 wants to reach the boundary, player 2 tries to obstruct him.

At each step player 1 choses a direction v ∈ IR2, player 2 replaces v
with ±v (i.e. stand or reverse v), then player 1 moves from x to
x +
√

2εbv .

The value function of the game is the minimum exit time, given by
uε(x) = ε2k if player 1 needs k steps to exit Ω starting from x and
following an optimal strategy.

For ε→ 0 (the continuum limit) uε converges to the solution of

−∆1u = 1 in Ω, u = 0 on ∂Ω.
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Introduction Game theory framework and game p-Laplacians

Random turn games
Two-player zero-sum games

X set of states, Y ⊂ X nonempty set of terminal states (target)
F : Y → IR terminal payoff function,
f : X \ Y → IR running payoff function
x0 initial state
E1,E2 transition graphs with vertex set X

The game:

A token is initially placed at x0

At the k-th step a fair coin is tossed and the player who wins may
move the token to any xk s.t. (xk−1, xk) is a directed edge in the
transition graph
The game ends the first time xk ∈ Y , with player 1’s payoff

F (xk) +
k−1∑
i=0

f (xi )

Player 1 seeks to maximize this payoff, Player 2 to minimize it
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Introduction Game theory framework and game p-Laplacians

The tug-of-war game (p =∞) [Peres-Schramm-Sheffield-Wilson ’08]

In the conventional tug-of-war game:

E1 = E2 = E , with E undirected (all moves are reversible)

Y = Y 1 ∪ Y 2, F ≡ 1 on Y 1, F ≡ 0 on Y 2

no running payoff

each player tries to ”tug” the token to his own target and away from
his opponent one

the game ends when a target is reached

the value of the game when the game starts at x is given by
u1(x) = supS1

infS2 F̂ (S1, S2) for player 1,

u2(x) = infS2 supS1
F̂ (S1, S2) for player 2,

where S1,S2 are the strategies for the two players, and F̂ denotes the
expected total payoff at the termination of the game

the game has a value u when u1(x) = u2(x) = u(x)
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Introduction Game theory framework and game p-Laplacians

The tug-of-war game on a metric spaces
(X , d) metric space, Y ⊂ X
Eε edge-set s.t. x ∼ y iff d(x , y) < ε
uε(x) value of the ε-t.o.w. game with terminal payoff F and running
payoff ε2f which starts at x = x0 ∈ X \ Y :

I at step k a coin is tossed and the winner choses xk s.t. d(xk , xk−1) < ε
I game ends when xk ∈ Y , with payoff F (xk) + ε2

∑k−1
i=0 f (xi )

u(x) = limε→0 uε(x) (if ∃) is the continuum value of the t.o.w. game

Let Ω ⊂ IRn be an open bounded set, F : ∂Ω→ IR uniformly continuous,
f : Ω→ IR either zero or strictly positive uniformly continuous.
Then there exists a unique u : Ω→ IR continuous viscosity solution of

−∆G
∞u = 2f in Ω, u = F on ∂Ω (4)

which is the continuum value of the tug-of-war on (Ω, d ,F , f ). Here:

∆G
∞u := |∇u|−2

∑
i ,j

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
.
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Introduction Game theory framework and game p-Laplacians

The tug-of-war with noise (1 < p <∞) [Peres-Sheffield ’08]

1 < p <∞, x0 ∈ Ω starting position

at each step k the player who wins the toss chooses a vector vk s.t.
|vk | ≤ ε and set xk = xk−1 + vk + zk , where zk is a random noise
vector orthogonal to vk with lenght

√
1/(p − 1)|vk |

(p →∞: |zk | → 0, tug-of-war; p = 2: |zk | = |vk |, random walk)

the game ends when the boundary is reached at some point y and
player 1’s payoff is set to F (y) (Player 1 tries to reach the boundary,
player 2 tries to prevent that)

uε(x) is the value of the game for player 1 starting from point x ∈ Ω
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Introduction Game theory framework and game p-Laplacians

The Tug-of-war game with noise
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Introduction Game theory framework and game p-Laplacians

The Tug-of-war game with noise

If Ω is game-regular (*), as ε→ 0 the functions uε converge
uniformly to the unique p-harmonic extension u of F

(*) For any y ∈ ∂Ω, if the game starts near y , player 1 has a strategy
for making the game terminate near y with high probability.
Sufficient conditions:

I p > d (in IRd)
I ∂Ω satisfies the cone property
I Ω simply connected (in IR2)

If we add a running payoff of size ε2f (xk) at the k-th step, u will be
the solution of problem

−∆G
p u = 2f in Ω, u = F on ∂Ω (5)

where ∆G
p u :=

1

p
|∇u|2−p div

(
|∇u|p−2∇u

)
.

S. Finzi Vita (Sapienza Università di Roma) Numerics for the Game p-Laplacian Roma, 20 Novembre 2012 14 / 42



Introduction Game theory framework and game p-Laplacians

Game p-Laplacians
For 1 ≤ p <∞, it is defined by

∆G
p u :=

1

p
|∇u|2−p div

(
|∇u|p−2∇u

)
=

1

p
|∇u|2−p ∆pu,

which is now singular for every p 6= 2 (and ∆G
2 u = 1

2 ∆2u).
By expanding the derivatives:

∆G
p u =

1

p
∆2 u +

p − 2

p
|∇u|−2

∑
i ,j

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
, (6)

then, by taking the limit for p →∞, we recover the previous definition of
the game ∞−Laplacian:

∆G
∞u := |∇u|−2

∑
i ,j

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= |∇u|−2∆∞u.
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Introduction Game theory framework and game p-Laplacians

Remarks
When u is twice differentiable and ∇u 6= 0,

∆G
∞ u =< D2u

∇u

|∇u|
,
∇u

|∇u|
>,

where D2u denotes the Hessian matrix, that is the second derivative
of u in the gradient direction.

It can be easily seen that

∆G
1 u = |∇u|∆1u = ∆2u −∆G

∞u,

that is the game 1-Laplacian can be thought as the second derivative
of u in the orthogonal direction to ∇u.

Combining previous relation with (6), we get the interesting
characterization:

∆G
p =

1

p
∆G

1 +
1

q
∆G
∞, (7)

(q conjugate exponent of p), that is any game p-Laplacian can be
thought as the convex combination of the two limiting cases.
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Introduction Game theory framework and game p-Laplacians

Since ∆G
p and ∆p differ only by the factor p|∇u|p−2, the equation

∆G
p u = 0 is equivalent in the classical, weak and viscosity sense to the

Euler-Lagrange equation (1) (if ∇u 6= 0). Then when the
homogeneous Dirichlet problem is treated, the distinction between the
two operators is irrelevant.

The viscosity solution definition has to be extended for the game
p-Laplacian case, due to the singularity for any p 6= 2.

We want to study the general Dirichlet problem

−∆G
p u = f in Ω, u = F on ∂Ω (8)

which has no variational sense, but a natural game-theoretic
interpretation.
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Introduction Game theory framework and game p-Laplacians

Viscosity solutions in IR2

Definition

Given 1 < p ≤ ∞, an upper semi-continuous function [respectively, lower
semi-continuous] u : Ω→ IR is a viscosity subsolution [supersolution] of

−∆G
p u(x) = f (x) in Ω, (9)

if for any φ ∈ C 2(Ω) such that u − φ has a local maximum [local
minimum] at x ∈ Ω, we have

(i) −∆G
p φ(x) ≤ f (x) [−∆G

p φ(x) ≥ f (x)] if ∇φ(x) 6= 0 ;

(ii) −∆G
2 φ(x) ≤ f (x) [−∆G

2 φ(x) ≥ f (x)] whenever ∇φ(x) = 0.

Definition

A function u is a viscosity solution of (9) if u is a viscosity subsolution and
supersolution according to (i) and (ii) .
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p-averages and discrete p-Laplacians

Numerical schemes for the p-Laplacian problems

For the variational p-Laplacian several approximation schemes have been
proposed:

Finite element methods: Barrett-Liu ’94

Finite difference methods for degenerate second order operators:
Crandall-Lions ’96, Oberman ’04

Finite volumes methods: Andreyanov-Boyer-Hubert ’06

Here we present a FD approach which is strictly connected with the game
theory interpretation of the problems, and which then applies to both
homogeneous (where variational and game Laplacian problems have the
same solutions) and non-homogeneous cases.

The key tool is the notion of p-average.
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p-averages and discrete p-Laplacians

Definition

Given a finite set of real numbers, S = {s1, s2, ....., sm}, we denote by
Ap(S) the p-average of its elements, that is Ap(S) is such that

m∑
j=1

|sj − Ap(S)|p = min
c∈IR

m∑
j=1

|sj − c |p if 1 < p <∞, (10)

A∞(S) =
1

2

[
max
sj∈S

sj + min
sj∈S

sj

]
,

A1(S) = median (S).

By convexity Ap(S) is uniquely defined for 1 < p ≤ ∞.

If s1 ≤ s2 ≤ .. ≤ sm: A1(S) =

{
sk+1 if m = 2k + 1,
(sk + sk+1)/2 if m = 2k .

An easy calculation shows that A2(S) is the usual arithmetic mean
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p-averages and discrete p-Laplacians

Properties of the p − average

For any k ∈ IR : Ap(S + k) = Ap(S) + k

min
j=1..m

sj ≤ Ap(S) ≤ max
j=1..m

sj

Let S = {s1, s2, ..., sm} and T = {t1, t2, ..., tm} be two finite sets of
real numbers having the same number m of elements, and let
1 ≤ p ≤ ∞ be fixed. If tj ≤ sj , ∀j = 1..m, then Ap(T ) ≤ Ap(S).

Let S and T be two finite sets of real numbers having the same
number of elements, and let 1 ≤ p ≤ ∞ be fixed. Assume that
S = {s1, s2, ..., sm} and T = {t1, t2, ..., tm} verify tj = sj + δj , for
every j = 1..m, where |δj | < δ for some δ > 0, then

Ap(S)− δ ≤ Ap(T ) ≤ Ap(S) + δ.
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p-averages and discrete p-Laplacians

p-averages and approximation schemes for the p-Laplacian

For p = 2 we can rewrite the classical 5-points finite difference formula for
the two dimensional Laplacian in terms of 2-average:

∆G
2 u(x1, x2) ≈ 1

2 h2
[u(x1 + h, x2) + u(x1, x2 + h)

+ u(x1 − h, x2) + u(x1, x2 − h)− 4 u(x1, x2)] =

=
2

h2
[A2(Ch(x, u))− u(x)] ,

where Ch(x, u) is the set of the four values of u in the adjacent nodes,
that is

Ch(x, u) = {u(x1 + h, x2), u(x1, x2 + h), u(x1 − h, x2), u(x1, x2 − h)}.

We could pick as Ch(x, u) even a larger set of values of u on the sphere of
radius h, but since the Laplacian is a linear operator, this would not
increase the accuracy.
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p-averages and discrete p-Laplacians

p-averages and approximation schemes for the p-Laplacian

For p =∞ ([Oberman, ’04a]) :

∆G
∞ u(x) ≈ 2

h2
[A∞(Ch(x, u))− u(x)] ,

where now Ch(x, u) is a discrete set of values of u on the B(x, h), and the
distribution and number of points on the sphere influences the accuracy of
the approximation.

For p = 1 a similar approach has been proposed by [Oberman, ’04b]

This suggests the following generalization to the game p-Laplacian ∀p:

∆G
p u(x) ≈ 2

h2
[Ap(Ch(x, u))− u(x)] , (11)

where Ch(x, u) would be a suitable discrete set of values of u on B(x, h).
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The approximation scheme and its convergence

The semi-Lagrangian scheme
We are then lead to the following approximation scheme for problem (8):

S(ρ, x, u(x), u) = 0 in Ω, (12)

where ρ := (h,∆θ) (with h spatial step and ∆θ angular resolution), and

S : [0, 1)× (0, π/2]× Ω× IR× L∞(Ω) −→ IR defined as

S(ρ, x, u(x), u) =


− 2
α2 h2

[
Ap(C∆θ

h (x, u;α))− u(x)
]
− f (x) in Ω,

u(x)− F (x) on ∂Ω.

If dΩ <∞ denotes the diameter of Ω, α = α(x) is a dilation parameter
such that 0 < α(x) ≤ dist(x, ∂Ω) < dΩ.
C∆θ

h (x, u;α) is a suitably chosen discrete set of values of u, taken on the
sphere B(x, hα), associated to the angular resolution ∆θ.
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The approximation scheme and its convergence

Convergence results

The scheme is monotone:
if u, v ∈ L∞(Ω), u(x) ≥ v(x) in Ω, then for all p ≥ 1,
ρ ∈ [0, 1)× (0, π/2], x ∈ Ω, t ∈ IR it holds

S(ρ, x, t, u) ≤ S(ρ, x, t, v).

For any p ≥ 2 the scheme is consistent:
for all x ∈ Ω and φ ∈ C∞(Ω), we have that

lim
ρ→0

2

α2 h2

[
Ap(C∆θ

h (x, φ;α))− φ(x)
]

=


∆G

p φ(x) if ∇φ(x) 6= 0,

∆G
2 φ(x) if ∇φ(x) = 0.

The scheme is stable (when f ≡ 0):
∀h > 0,∆θ > 0, there exists a solution uρ ∈ L∞(Ω) of
S(ρ, x , t, uρ) = 0 such that ‖uρ‖∞ ≤ ‖F‖∞.
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The approximation scheme and its convergence

Convergence follows by a result of Barles-Souganidis, ’91

”Any monotone, stable and consistent approximation scheme to fully
nonlinear second order elliptic or parabolic, possibly degenerate, PDE
converges to the correct (viscosity) solution provided that there exists a
comparison principle for the limiting equation.”

Assume f ≡ 0, then there exists a unique bounded viscosity solution for
problem (2), for which a comparison principle holds.
Since the scheme is monotone, stable and consistent (for p ≥ 2), then it is
convergent:

The solution uρ of (12) converges as ρ→ 0 to the unique viscosity
solution of (8).
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Numerical implementation

Numerical implementation

We have introduced an approximation scheme which, at least under
suitable hypotheses (f ≡ 0, p ≥ 2) converges to the unique viscosity
solution of the Dirichlet problem for the game p-laplacian

In view of a practical implementation of the scheme we introduce a
structured grid and an explicit time marching algorithm for the
problem

ut = ∆G
p u + f

Since the points used by the set C∆θ
h for the p-averages are not in

general grid points, we have to introduce interpolation techniques
which respect the monotonicity of the scheme

We are able to prove that for f ≡ 0 and suitable initial conditions the
iterates of our totally discrete scheme converge

Numerical tests show that they converge to the right viscosity
solution of the stationary problem
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Numerical implementation

Space discretization and interpolation

h > 0 space discretization step ({xj}Nj=1 nodes on a h-uniform grid)

∆θ = π
2m angular discretization step (→ 4m points on the disk)

C∆θ
h (x, u;α)) = {u(yi ), i = 0, 1, .., 4m − 1} set for the p-average
I yi = x + hαri , ri = (cos i∆θ, sin i∆θ)
I 0 < α∗ < α(x) ≤ dist(x, ∂Ω) dilation parameter

yi not in general grid points → bilinear interpolation

Ĉ∆θ
h (xj , u;αj) = {I [u](yi

j), i = 0, 1, .., 4m − 1}
I I [u](y) = ay1y2 + by1 + cy2 + d =

∑4
k=1 u(xk)λk(y)

I xk four vertices of the cell where y is
I λk(y) given functions dependings on the coordinates of xk

I αj may vary from point to point (→ multi-level circle stencil)
αj(xj) = βmin(s, dj/h) (s ∈ IN, 0 < β ≤ 1, dj = dist(xj , ∂Ω))
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Numerical implementation

Dq

xj

aj h

Figure: The 4-level circle stencil.
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Numerical implementation

Remarks

The choice of bilinear interpolation is essential to preserve the
monotonicity of the scheme which is needed for the convergence
proof. Quadratic interpolation has not this property.
Bilinear interpolation satisfies:

I minD u(x) ≤ I [u](x) ≤ maxD u(x)

I I [u + δ](x) = I [u] + δ

With our choise of ∆θ the number of equally distributed points on
the sphere of radius hαj is a multiple of 4. This means that if r is an
admissible direction, so is its opposite −r, as well as its orthogonal
and its reflections with respect of each of the axes.

The tests show that the multi-level circle strategy is able in general to
speed up the convergence (reducing the number of iterations).
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Numerical implementation

The practical scheme

On the previous grid, given an initial condition u0 ∈ IRN , we implement
the explicit time marching scheme:

un+1 = Tρ(un) := un −∆t S(ρ, y,un(y),un),

which is consistent, because the scheme S is consistent in the stationary
case. Taking care of the interpolation, we get

un+1
j =


un
j +

2 ∆t

α2
j h2

[
Ap(Ĉ∆θ

h (xj ,u
n;αj))− un

j

]
+ ∆t f (xj) xj ∈ Ω,

F (xj) xj ∈ ∂Ω;

until a stopping criterion is satisfied (maxj |un+1
j − un

j | ≤ ε).
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Numerical implementation

A simpler variant

If we choose parameters s.t. 2∆t
α2

j h
2 = 1 the scheme simplifies as

un+1
j =


Ap(Ĉ∆θ

h (xj ,u
n;αj)) + ∆t f (xj) if xj ∈ Ω,

F (xj) if xj ∈ ∂Ω;

Remark. The p-averages can be computed by any standard method for
minimization of convex function. We used the Newton Bracketing method,
but this part can be optimized to improve the speed of calculations.
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Numerical implementation

The Newton-Bracketing method

Let f : IR→ IR be a convex function such that its minimum value fmin is
attained, and is contained in the bracket [L,U = f (x)] for some point x
such that f ′(x) 6= 0. Then the iterative method generates a sequence of
nested brackets shrinking to a point:

1 Stopping rule: If U − L < ε stop with x as a solution.

2 Select a value M := αU + (1− α)L for some 0 < α < 1.

3 Do one Newton iteration x+ = x − f (x)−M
f ′(x) .

4 Case 1: If f (x+) < f (x) then update U : U+ := f (x+) and leave
L+ := L. Go to 1.

5 Case 2: If f (x+) ≥ f (x) then update L : L+ := M and leave
U+ := U, x+ := x . Go to 1.
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Numerical implementation
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Numerical implementation

Convergence of the iterations

Let
2 ∆t

α2
∗ h

2
≤ 1. Assume f ≡ 0, then for n ≥ 1 it holds

sup
j=1..N

|un
j | ≤ sup

j=1..N
|un−1

j | ≤ sup
j=1..N

|u0
j | (stability)

Let
2 ∆t

α2
∗ h

2
≤ 1 and u0 given by

u0
j =


min
∂Ω

F if xj ∈ Ω,

F (xj) if xj ∈ ∂Ω.

Then for n ≥ 1 the iterations generated by the scheme verify

un
j ≥ un−1

j for any j = 1..N, and n ≥ 1 (pointwise monotonicity)

Then for f ≡ 0 and an appropriately chosen initial condition the
scheme is pointwise convergent.
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Numerical tests

Example 1: Aronsson function

Ω = (−1, 1)2, p =∞, f ≡ 0, F (x , y) = |x |4/3 − |y |4/3

Then u = |x |4/3 − |y |4/3 is the exact solution of the problem (an example
of an absolute minimizer which is not twice differentiable). The scheme
gives the following results (N2= nodes, d= directions) when a 2-level
iterations is used (with β = 0.99):

d N = 41 N = 81 N = 161 N = 241 N = 401
4 0.1105 (250) 0.0765 (448) 0.0373 (584) 0.0225 (589) 0.0122 (621)
8 0.0274 (80) 0.0182 (161) 0.0084 (214) 0.0069 (190) 0.0048 (188)

16 0.0084 (54) 0.0070 (75) 0.0043 (105) 0.0033 (108) 0.0023 (112)
24 0.0088 (57) 0.0081 (73) 0.0050 (91) 0.0035 (103) 0.0024 (107)

Table: L∞- errors and iterations (in parentheses) for test on Aronsson function
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Numerical tests

Example 2

Ω = (−1, 1)2, p =∞, f = 0, F (x , y) = |x |2 |y |2

Figure: N = 4012, d = 24, 2-lev (β = 0.99).
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Numerical tests

Example 3

Ω = (−1, 1)2, p =∞, f = 0, F (x , y) = x3 − 3xy2

Figure: N = 4012, d = 24, 2-lev (β = 0.99).
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Numerical tests

Example 4

Ω = (−1, 1)2, p =∞, f = 0, F characteristic function of point (1, 0)

Figure: N = 4012, d = 24, 4-lev (β = 0.99).
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Numerical tests

Example 5
Ω = (−1, 1)2, p ≥ 2, f = 1, F (x , y) = (1− x2 − y2)/2

The exact solution is known: u(x , y) = (1− x2 − y2)/2, the function
which solves the problem with F = 0 on the unit sphere.

N (lev) d = 16 d = 24
21 (2) 0.0634 (163) 0.0617 (180)
21 (4) 0.0241 (50) 0.0192 (107)
41 (4) 0.0201 (213) 0.0191 (163)

Table: L∞-errors and iterations for p = 5, β = 0.9.

N (lev) d = 16 d = 24
21 (2) 0.0590 (249) 0.0563 (248)
21 (4) 0.0211 (80) 0.0185 (77)
41 (4) 0.0192 (272) 0.0156 (272)

Table: L∞-errors and iterations for p =∞, β = 0.9.
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Numerical tests

Example 6
Ω = (−2, 2)× (−1, 1), p =∞, f ≡ 1, F ≡ 0

The exact solution is known only in part of the domain:
u(x , y) = (1− y2)/2 when |x | ≤ 1

Figure: Surface and contour plots for N = 201× 101, d = 16, 4-lev (β = 0.8).
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Numerical tests

Thank you
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