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Content

New formulation for the optical flow problem and the digital inpainting
problem.
For determining optical flows, an optimization approach is presented
where the velocity field components are interpreted as control functions
of the optimal control problem of tracking a sequence of given frames.

For digital inpainting, a new approach based on the solution of a

Ginzburg–Landau equation is discussed.

Alfio Borz̀ı Università degli Studi del Sannio
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Optical flow
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Optical flow: The field of apparent velocities of movement of brightness
points in a sequence of images.
Assumptions: Objects represented in the image are flat surfaces, are
uniformly illuminated, and reflectance varies smoothly.
Applications: Based on information about spatial arrangement of objects
and the rate of change of this arrangement.
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Sequence of frames
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DT = 1

Each frame is composed of L × L pixels (DX = 1).

Y represents grey or color values. Y may be affected by noise.
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Formulation of the problem

Find ~w = (u, v) such that It + ~w · ~∇I = 0 is satisfied and I (·, tk) ≈ Yk .

Difficulties

◮ There are two unknown components of the optical flow.

◮ Needs of auxiliary constraint or regularization.

◮ Inverse problem associated to the hyperbolic OFC equation.

◮ Given Y , extract approximation to the spatio-temporal derivatives,
(Yx ,Yy ,Yt).
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Input and output
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The Horn & Schunck Method

OFC equation + global smoothness term

Minimizing:

∫

D

[(It + ~w · ~∇I )2 + λ2(|∇u|2 + |∇v |2)]dx, (1)

A minimum of (1) satisfies necessarily the Euler equations:

λ2∆u − Ix (It + uIx + vIy ) = 0,

λ2∆v − Iy (It + uIx + vIy ) = 0,

where (It , Ix , Iy ) are obtained by finite differentiation of the data Yk .
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Optimal control framework
Observation: (u, v) determine the transformation of an image frame to
the next.
Idea: Take them as control functions of the following optimal control
problem:
Find ~w and I such that

{
It + ~w · ∇I = 0, in Q = Ω × (0,T ),

I (·, 0) = Y1,

and minimize the cost functional

J(I , ~w) =
1

2

N∑

k=1

∫

Ω

|I (x , y , tk ) − Yk |2dΩ +
α

2

∫

Q

Φ(|∂~w
∂t

|2)dq

+
β

2

∫

Q

Ψ(| ~∇u|2 + | ~∇v |2)dq +
γ

2

∫

Q

|~∇ · ~w |2dq,

where α, β, and γ are the weights of the cost of the control.
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Cost functional J(I , ~w)

I (·, tk , ~w) approximates Yk :
1
2

∑N

k=1

∫

Ω
|I (x , y , tk ) − Yk |2dΩ

~w is smooth with respect to t: α
2

∫

Q
Φ(|∂~w

∂t
|2)dq, Φ(s) = s

~w piecewise smooth in the spatial variables: β
2

∫

Q
Ψ(| ~∇u|2 + | ~∇v |2)dq,

Ψ(s) =







2
√

s for s ∈ [0, δ),
s + c1 for s ∈ [δ, δ′],

2
√

s + c2 for s ∈ (δ′,∞).

Filling-in: γ
2

∫

Q
|~∇ · ~w |2dq

Alfio Borz̀ı Università degli Studi del Sannio
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Optimality system
The state equation (constraint) evolving forward:

It + ~w · ∇I = 0.

The adjoint equation evolving backwards:

pt + ∇ · (~wp) = 0, on t ∈ (tk−1, tk),

p(·, t+
k ) − p(·, t−k ) = I (·, tk ) − Yk , t = tk ,

for k = 2, . . .N − 1.
Two (space-time) elliptic control equations:

α
∂2u

∂t2
+ β∇ · [Ψ′(|∇~w |2)∇u] + γ

∂

∂x
(∇ · ~w) = p

∂I

∂x
,

α
∂2v

∂t2
+ β∇ · [Ψ′(|∇~w |2)∇v ] + γ

∂

∂y
(∇ · ~w) = p

∂I

∂y
,

where |∇~w |2 = |∇u|2 + |∇v |2.
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Optimality system (continue)

Initial conditions and terminal conditions
For the (forward) optical flow equation:

I (x , y , t)|t=0 = Y1(x , y).

For the (backward) adjoint optical flow equation:

p(x , y , t)|t=T = −(I (x , y ,T ) − YN(x , y)).

For the control equations:

∂~w

∂t
= 0, at t = 0 and t = T ; ~w = 0, on ∂Ω × (0,T ).
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Numerical schemes: Explicit Second-Order TVD Scheme

The adjoint equation. pt′ + ~∇ · (−~wp) = −∑N−1
k=2 δ(t, tk)(I − Yk)

dpi

dt ′
= − 1

h
[1 +

1

2
χ(r+

i−1/2) −
1

2

χ(r+
i−3/2)

r+
i−3/2

](−u)+
i−1/2(pi − pi−1)

− 1

h
[1 +

1

2
χ(r−

i+1/2) −
1

2

χ(r−
i+3/2)

r−
i+3/2

](−u)−
i+1/2(pi+1 − pi)

with Superbee limiter.
Delta impulses: splitting technique at tk

p(·, tκ) = p(·, t+
κ ) − (I (·, tk ) − Yk) for tκ+1 = tk ,

p(·, t+
κ ): by solving the adjoint equation with init. cond. p(·, tκ+1).

Alfio Borz̀ı Università degli Studi del Sannio
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Numerical schemes: Multigrid Algorithm
Discretized elliptic equation (e.g., u component):

α
ui,j,κ+1−2ui,j,κ+ui,j,κ−1

τ 2 + β{∇h · [Ψ′(|∇h~wh|2)∇huh]}i ,j,κ

+γ
ui+1,j,κ−2ui,j,κ+ui−1,j,κ

h2

= [p ∂I
∂x

]i ,j,κ − γ
vi+1,j+1,κ−vi+1,j−1,κ−vi−1,j+1,κ+vi−1,j−1,κ

4h2 .

Multigrid FAS method for solving A
h(φh) = f

h.

1. Apply ν1 smoothing steps: φh = Sν1(φh, f h).
2. Transfer the approximate solution: φH = ÎH

h φ
h.

3. Compute the right hand side of the FAS equation:

f H = IH
h f h + [AH(φH ) − IH

h Ah(φh)].

4. Apply γ times the FAS scheme to AH(φ̂H) = f H .
5. Use coarse level correction: φh = φh + I h

H(φ̂H − φH).
6. Apply ν2 smoothing steps: φh = Sν2(φh, f h).
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Solution Process

Segregation loop for solving the optimal control problem.

◮ Apply the Horn & Schunck method for starting approximation to
the optical flow.

1. Solve the optical flow constraint equation to obtain I .
2. Solve the adjoint optical flow constraint equation to obtain p.
3. Update the right-hand sides of the elliptic system, compute

p ~∇I .
4. Apply a few V-cycles of multigrid to solve the control

equations, obtain ~w .
5. Go to 1 and repeat Iloop times.

Alfio Borz̀ı Università degli Studi del Sannio
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Result variables
Consider ~w = (u, v , 1) in units of (pixel,pixel,frame).

Direction vector: ŵ = 1√
1+u2+v2

(u, v , 1)T .

Orientation error: ψE
i ,j,κ = arccos(ŵ c

i ,j,κ · ŵ e
i ,j,κ)

Mean orientation error:

ψ̄ =
1

KL2

K∑

κ=1

L∑

i ,j=1

ψE
i ,j,κ.

Tracking error:

||I − Y ||2 =

K∑

κ=1

L∑

i ,j=1

(I tk
i ,j − Y (xi , yj , tk))

2.
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Two synthetic images of moving square (with 30% noise) (uc , vc) = (1.5, 2)
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Dependence on α; β = 0.25, and γ = 0.1.

α |u|max , |v |max ψ̄ ||I − Y ||2
P

cost ||div(w)||2

0.5 1.59, 2.08 44.1 107.4 20.1 8.5(-1)

1 1.78, 2.27 45.7 104.7 45.6 1.6

5 2.08, 2.34 48.4 98.5 145.5 3.9

Dependence on γ; α = 1.0, and β = 0.25.

γ |u|max , |v |max ψ̄ ||I − Y ||2
P

cost ||div(w)||2

0 1.86, 2.34 46.5 102.4 65.1 0

0.5 1.53, 2.03 43.5 111.6 16.5 1.0

1 1.39, 1.82 41.8 117.9 7.9 6.9(-1)

2 1.31, 1.58 39.8 127.6 4.0 4.3(-1)

H & S 2.18, 2.28 49.9
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Fast moving objects
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Test case: (uc , vc) = (5, 5). Optical flow obtained with optimal control
method (left) and with Horn & Schunck scheme (right).
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Moving and dilating objects
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Optical flow with optimal control (left) and with Horn & Schunck (right);
corresponding u component (bottom); the v component is approx. zero.
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Real images
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Optical flow with optimal control (top) and with Horn & Schunck
(bottom)
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Convergence results

Well-posedness of the iterative algorithm for the case Ψ(s) = s:
Theorem 1 Suppose that I (0) = Y1 ∈ H2

per (Ω), Yk ∈ H1
per (Ω) ∩ W 1,q (Ω) for some q ∈ (2, ∞] and all

k = 2, . . . , N, and that Ψ(s) = s. Then, the iteration map F defined by the segregation loop ~wnew = F (~wold ) is
well-defined provided γ > 0 is sufficiently small.
Let W be the restoring energy cost defined by

W (~w) =

Z
T

0

Z
Ω

(
α

2
|
∂~w

∂t
|
2

+
β

2
(|∇u|

2
+ |∇v|

2
) +

γ

2
|∇ · ~w|

2
) dxdt.

Theorem 2 Suppose that the hypotheses of Theorem 1 hold and denote by (I n, ~wn) and (I n+1, ~wn+1) two
consecutive iterates of the proposed algorithm. Then we have

J(I n+1, ~wn+1) − J(I n, ~wn) = −W (~wn+1 − ~wn)

− 1
2

PN
k=2

R
Ω |I n+1(tk ) − I n(tk )|2 dx

+
R T
0

R
Ω(pn+1 − pn) (~wn+1 − ~wn) · ∇I n dxdt.
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Digital inpainting

Digital inpainting is the process of restoration of missing image data
performed by computer programs (requiring a user only to mark
inpainting domains in a digitized image).
Digital inpainting has several applications in photography such as scratch
removal or retouching.
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Digital inpainting and the Ginzburg–Landau equation

Solutions of the real valued Ginzburg–Landau equation develop areas
with values ±1, which are separated by interfaces of minimal area.

We focus on inpainting of gray–valued or color images. For this purpose
we use the complex valued Ginzburg–Landau equation.
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The Ginzburg–Landau Equation (GLE)
Ginzburg & Landau derived the following approximation for the
thermodynamic energy related to superconductors:

F (u,∇u) :=
1

2

∫

Ω

| − i∇u|2
︸ ︷︷ ︸

kinetic term

+α|u|2 +
β

2
|u|4

︸ ︷︷ ︸

potential term

where u : Ω → C is called the order function, and α < 0 and β > 0 are
physical constants.
The state of minimal energy satisfies the Euler equation
δF (u,∇u)/δu = 0. This is the stationary Ginzburg–Landau equation

∆u +
1

ε2
(
1 − |u|2

)
u = 0 .

Where the minima of the potential term function are attained at the
sphere |u| = 1 choosing α = − 1

ε2 and β = 1
ε2 .
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The GLE setting for inpainting
Let D be the domain of the image, usually a rectangular subset of R2.
The inpainting domain is denoted by Ω ⊂ D.

Let u0 : D → C be defined by the given image. We define
ℜe(u0) =: u0 : D → [−1, 1] be the gray–value intensity of an image
scaled to the interval [−1, 1]; with values −1 (white) and 1 (black).

Further, we set ℑm(u0) =

√

1 −
(
u0

)2
such that |u0(x)| = 1 for all

x ∈ D.

Let u be the solution to the GLE with Dirichlet boundary condition
u|∂Ω = u0|∂Ω. ℜe(u) is the inpainting function.
The GLE can be generalized to RGB color images where u : D → C3. In
this case we replace | · | with

‖u(x)‖ := max{|u1(x)|, |u2(x)|, |u3(x)|}

The corresponding GLE cannot be derived from a variational principle.

Alfio Borz̀ı Università degli Studi del Sannio
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GLE Solution by time-stepping
For the numerical solution of the GLE, we use a relaxation procedure
corresponding to the time evolution of

∂u

∂t
= ∆u +

1

ε2
(
1 − |u|2

)
u

towards a stationary state.
We consider θ–schemes defined as follows: For θ ∈ [0, 1]

u(k+1) − u(k)

δt
= θ

(

∆hu
(k+1) +

1

ε2

(

1 − |u(k+1)|2
)

u(k+1)

)

+ (1 − θ)

(

∆hu
(k) +

1

ε2

(

1 − |u(k)|2
)

u(k)

)

We also consider implicit–explicit (IMEX) schemes

u(k+1) − u(k)

δt
= ∆hu

(k+1) +
1

ε2

(

1 − |u(k)|2
)

u(k)

Alfio Borz̀ı Università degli Studi del Sannio
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Time-stepping as a minimization procedure
Define λ(v ,w) = 1

ε2 (1 − v2 − w 2) and choose θ = 0.
The solution of the discretized stationary GLE corresponds to the
minimum of the discrete functional

Jh(u) =
1

2




∑

d∈{x,y}
‖∂−d v‖2

2 +
∑

d∈{x,y}
‖∂−d w‖2

2



 +
ǫ2

4
(λ(v ,w), λ(v ,w)) .

The gradient of Jh(u) is given by

Jh(u)′ = −(∆hu +
1

ε2
(
1 − |u|2

)
u)

Explicit time step as a minimization step with step length δt

u(k+1) = u(k) − δt Jh(u
(k))′ where δt

(
1

h2
+

2

ε2

)

≤ 1.
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The painting “Holy Family” from Michelangelo with scratches (top left). The inpainted image with plain

Ginzburg–Landau algorithm (bottom left). The inpainted image with the same algorithm interleaved with some

steps of coherence enhancing diffusion (bottom right). Detailed views of the red framed parts are compared (top

right)Alfio Borz̀ı Università degli Studi del Sannio
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Ambiguous example .....

The noisy area should be inpainted (first picture), inpainting with the Ginzburg–Landau algorithm (second picture),

inpainting via level set algorithm (third picture).
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Three Dimensional Inpainting

A corner of the cube was manually cut out (left). The completion attained with a linear diffusion approach

(middle). With the Ginzburg–Landau equation a perfect corner is achieved (right)
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Thank you

Thanks for your attention !!
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