Quantization of Poisson-Lie groups and a little bit beyond

Pavol Ševera

Joint work with Ján Pulmann

Deformation quantization problem for Hopf algebras

Ingredients

- a commutative Hopf algebra $\left(\mathcal{H}, m_{0}, \Delta_{0}, S_{0}, 1, \epsilon\right)$
- a compatible Poisson bracket $\{\}:, \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}$ $\left(\Delta_{0}: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}\right.$ is a Poisson algebra morphism)
Typically $\mathcal{H}=C^{\infty}(G)$, in general \mathcal{H} in any \mathbb{Q}-linear SMC

Deformation quantization problem for Hopf algebras

Ingredients

- a commutative Hopf algebra $\left(\mathcal{H}, m_{0}, \Delta_{0}, S_{0}, 1, \epsilon\right)$
- a compatible Poisson bracket $\{\}:, \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}$ $\left(\Delta_{0}: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}\right.$ is a Poisson algebra morphism)

Typically $\mathcal{H}=C^{\infty}(G)$, in general \mathcal{H} in any \mathbb{Q}-linear SMC

The problem

Find "universal" (functorial) deformations

$$
m_{\hbar}=\sum_{n=0}^{\infty} \hbar^{n} m_{n} \quad \Delta_{\hbar}=\sum_{n=0}^{\infty} \hbar^{n} \Delta_{n} \quad S_{\hbar}=\sum_{n=0}^{\infty} \hbar^{n} S_{n}
$$

s.t. $\left(\mathcal{H}, m_{\hbar}, \Delta_{\hbar}, S_{\hbar}, 1, \epsilon\right)$ is a Hopf algebra and $m_{1}-m_{1}^{o P}=\{$, [For $\mathcal{H}=(U \mathfrak{g})^{*}$: Etingof-Kazhdan 1995]

The method in a nutshell: holonomies on a surface (not supposed to be understandable at this point)

Hopf holonomies on a disk
O n black disks in $\bigcirc=$ white disk

$$
H^{1}(\bigcirc, \bigcirc ; G) \cong G^{n-1}
$$

The method in a nutshell: holonomies on a surface (not supposed to be understandable at this point)

Hopf holonomies on a disk
O $=n$ black disks in $O=$ white disk

$H^{1}(\bigcirc, \bigcirc) \cong G^{n-1}$ generalizes to

$$
H_{1}(\bigcirc, \mathcal{H}) \cong \mathcal{H}^{\otimes(n-1)}
$$

(allowed by: ordering along and across a path)

The method in a nutshell: holonomies on a surface (not supposed to be understandable at this point)

Hopf holonomies on a disk

$$
\begin{aligned}
& =n \text { black disks in } \bigcirc=\text { white disk } \\
& H^{1}(\bigcirc, G) \cong G^{n-1} \text { generalizes to } \\
& H_{1}(\bigcirc, \mathcal{H}) \cong \mathcal{H}^{\otimes(n-1)} \\
& \text { (allowed by: ordering along and across a path) }
\end{aligned}
$$

Move the black disks $\sim B_{n}$ acts on $H_{1}(\bigcirc, \mathcal{O})$

The method in a nutshell: holonomies on a surface (not supposed to be understandable at this point)

Hopf holonomies on a disk
O n black disks in $\bigcirc=$ white disk

$H^{1}(\bigcirc, G) \cong G^{n-1}$ generalizes to

$$
H_{1}(\bigcirc, \mathcal{H}) \cong \mathcal{H}^{\otimes(n-1)}
$$

(allowed by: ordering along and across a path)
Move the black disks $\leadsto B_{n}$ acts on $H_{1}(\bigcirc, \bigcirc \mathcal{H})$
= a Hopf algebra

provided we know the maps (for nested disks) $H_{1}(\bigcirc, \bigcirc \mathcal{H}) \rightarrow H_{1}(\bigcirc, \bigcirc \mathcal{H}) \rightarrow H_{1}(\bigcirc, \bigcirc ; \mathcal{H})$

The method in a nutshell: holonomies on a surface (not supposed to be understandable at this point)

Hopf holonomies on a disk

- n black disks in $\bigcirc=$ white disk

$H^{1}(\bigcirc, G) \cong G^{n-1}$ generalizes to

$$
H_{1}(\bigcirc, \mathcal{H}) \cong \mathcal{H}^{\otimes(n-1)}
$$

(allowed by: ordering along and across a path)
Move the black disks $\leadsto B_{n}$ acts on $H_{1}(\bigcirc, \bigcirc \mathcal{H})$

$$
=\text { a Hopf algebra }
$$

provided we know the maps (for nested disks) $H_{1}(\bigcirc, \bigcirc ; \mathcal{H}) \rightarrow H_{1}(\bigcirc, \bigcirc \mathcal{H}) \rightarrow H_{1}(\bigcirc, \bigcirc ; \mathcal{H})$

Quantization: obtain the B_{n} action via the KZ connection (or from a Drinfeld associator)

The nerve of a group G

holonomies in the "commutative world"
X a finite set

$$
\begin{gathered}
F(X)=\left\{g: X \times X \rightarrow G \mid g_{i j} g_{j k}=g_{i k} \& g_{i i}=1(\forall i, j, k \in X)\right\} \\
F(X) \cong G^{|X|-1}, \text { e.g. } \bullet \xrightarrow{g_{12}} \bullet \xrightarrow{g_{23}} \bullet \xrightarrow{g_{34}} \bullet(|X|=4)
\end{gathered}
$$

functoriality: $f: X \rightarrow Y \quad \leadsto \quad f^{*}: F(Y) \rightarrow F(X)$
$F:$ FinSet $^{o p} \rightarrow$ Set

The nerve of a group G

holonomies in the "commutative world"
X a finite set

$$
\begin{gathered}
F(X)=\left\{g: X \times X \rightarrow G \mid g_{i j} g_{j k}=g_{i k} \& g_{i i}=1(\forall i, j, k \in X)\right\} \\
F(X) \cong G^{|X|-1}, \text { e.g. } \bullet \xrightarrow{g_{12}} \bullet \xrightarrow{g_{23}} \bullet \xrightarrow{g_{34}} \bullet(|X|=4)
\end{gathered}
$$

functoriality: $f: X \rightarrow Y \quad \leadsto \quad f^{*}: F(Y) \rightarrow F(X)$

$$
F: \text { FinSet }^{O P} \rightarrow \text { Set }
$$

From a nerve to its group
If F is the nerve of G then $G=F(\bullet \bullet)$

The nerve of a group G
holonomies in the "commutative world"
X a finite set

$$
\begin{gathered}
F(X)=\left\{g: X \times X \rightarrow G \mid g_{i j} g_{j k}=g_{i k} \& g_{i i}=1(\forall i, j, k \in X)\right\} \\
F(X) \cong G^{|X|-1}, \text { e.g. } \bullet \xrightarrow{g_{12}} \bullet \xrightarrow{g_{23}} \bullet \xrightarrow{g_{34}} \bullet(|X|=4)
\end{gathered}
$$

functoriality: $f: X \rightarrow Y \quad \leadsto \quad f^{*}: F(Y) \rightarrow F(X)$

$$
F: \text { FinSet }^{O P} \rightarrow \text { Set }
$$

From a nerve to its group

If F is the nerve of G then $G=F(\bullet \bullet)$
F is a nerve iff $F\left(\bullet{ }^{n}\right) \rightarrow F(\bullet \bullet)^{n-1}$ is a bijection
The product: $F(\bullet \bullet) \times F(\bullet \bullet) \cong F(\bullet \bullet \bullet) \rightarrow F(\bullet \bullet)$

Colliding braids and Hopf algebras

BrSet - "braided maps":

(The BMC generated by a commutative algebra)

Colliding braids and Hopf algebras

BrSet - "braided maps":

(The BMC generated by a commutative algebra)

$F(\bullet \bullet)^{3}$

Theorem (The nerve of a Hopf algebra)
Hopf algebras (with invertible S) in a BMC \mathcal{C} are equivalent to braided lax-monoidal functors $F: \operatorname{BrSet} \rightarrow \mathcal{C}$ such that $F(\bullet \bullet)^{n-1} \rightarrow F\left(\bullet^{n}\right)$ is an iso and $1_{\mathcal{C}} \rightarrow F() \rightarrow F(\bullet)$ are isos

Colliding braids and Hopf algebras

BrSet - "braided maps":

(The BMC generated by a commutative algebra)
$F\left(\bullet^{4}\right)$

$F(\bullet \bullet)^{3}$

Theorem (The nerve of a Hopf algebra)

Hopf algebras (with invertible S) in a BMC \mathcal{C} are equivalent to braided lax-monoidal functors $F: B r S e t \rightarrow \mathcal{C}$ such that $F(\bullet \bullet)^{n-1} \rightarrow F\left(\bullet^{n}\right)$ is an iso and $1_{\mathcal{C}} \rightarrow F() \rightarrow F(\bullet)$ are isos

Hopf holonomies at last

Constructing the nerve of a Hopf algebra
a Hopf algebra $\mathcal{H} \in \mathcal{C} \quad \leadsto$ a functor $F: \operatorname{BrSet} \rightarrow \mathcal{C}$
$F\left(\bullet{ }^{n}\right)=\mathcal{H}^{n-1}$

Hopf holonomies at last

Constructing the nerve of a Hopf algebra
a Hopf algebra $\mathcal{H} \in \mathcal{C} \quad \leadsto$ a functor $F: \operatorname{BrSet} \rightarrow \mathcal{C}$
$F\left(\bullet{ }^{n}\right)=\mathcal{H}^{n-1}$

Hopf holonomies at last

Constructing the nerve of a Hopf algebra
a Hopf algebra $\mathcal{H} \in \mathcal{C} \quad \leadsto$ a functor $F:$ BrSet $\rightarrow \mathcal{C}$
$F\left(\bullet^{n}\right)=\mathcal{H}^{n-1}$

Hopf holonomies at last

Constructing the nerve of a Hopf algebra
a Hopf algebra $\mathcal{H} \in \mathcal{C} \quad \leadsto$ a functor $F:$ BrSet $\rightarrow \mathcal{C}$
$F\left(\bullet^{n}\right)=\mathcal{H}^{n-1}$

Hopf holonomies at last

Constructing the nerve of a Hopf algebra
a Hopf algebra $\mathcal{H} \in \mathcal{C} \quad \leadsto$ a functor $F:$ BrSet $\rightarrow \mathcal{C}$
$F\left(\bullet^{n}\right)=\mathcal{H}^{n-1}$

F is braided lax monoidal:
$F\left(\bullet^{m}\right) F\left(\bullet^{n}\right)=\mathcal{H}^{m-1} \mathcal{H}^{n-1} \rightarrow F\left(\bullet^{m+n-1}\right)=\mathcal{H}^{m+n-1}$: inserting 1

The semiclassical picture: FinSet + chord diagrams

Poisson Hopf algebras in terms of infinitesimal braids
ChordSet, the infinitesimally braided version of FinSet/BrSet:

$$
\begin{gathered}
\not / \backslash=X+\frac{\epsilon}{2} \not \subset \quad\left(\epsilon^{2}=0\right) \quad \neq=0 \\
中_{j}=t^{i j}=t^{j i}, \quad \prod_{i j} \quad{ }_{j}=t^{(i j) k}=t^{i k}+t^{j k}, \quad\left[t^{i j}, t^{(i j) k}\right]=0
\end{gathered}
$$

The semiclassical picture: FinSet + chord diagrams
Poisson Hopf algebras in terms of infinitesimal braids
ChordSet, the infinitesimally braided version of FinSet/BrSet:

$$
\begin{aligned}
& \neq X+\frac{\epsilon}{2} \ngtr\left(\epsilon^{2}=0\right) \quad \nRightarrow=0 \\
& \underset{i}{Q_{j}}=t^{i j}=t^{j i}, \quad \prod_{i j} \quad \underset{-}{l}=t^{(i j) k}=t^{i k}+t^{j k}, \quad\left[t^{i j}, t^{(i j) k}\right]=0
\end{aligned}
$$

Theorem (The nerve of a Poisson Hopf algebra)

Poisson Hopf algebras in a (linear) SMC C are equivalent to braided lax-monoidal functors F : ChordSet $\rightarrow \mathcal{C}$ such that $F(\bullet \bullet)^{n-1} \rightarrow F\left(\bullet^{n}\right)$ is an iso and $1_{\mathcal{C}} \rightarrow F() \rightarrow F(\bullet)$ are isos

$$
\mathcal{H}=F(\bullet \bullet), \Delta=\|, m=
$$

Quantization: KZ connection and associators

KZ connection becomes Gauss-Manin connection

Knizhnik-Zamolodchikov connection

$$
A_{n}^{K Z}=\hbar \sum_{1 \leq i<j \leq n} t^{i j} \frac{d\left(z_{i}-z_{j}\right)}{z_{i}-z_{j}} \quad d A_{n}^{K Z}+\left[A_{n}^{K Z}, A_{n}^{K Z}\right] / 2=0
$$

Quantization of Poisson Hopf algebras

Better and easier: parenthesize the objects of BrSet, define the functor (Pa) BrSet \rightarrow ChordSet via

$$
\searrow \vdash \gg \exp \left(\hbar t^{12} / 2\right) \quad \lambda \mapsto \lambda \quad|>| \mapsto \Phi\left(\hbar t^{12}, \hbar t^{23}\right)
$$

The method in a nutshell: holonomies on a surface (I guess it's still not understandable)

Hopf holonomies on a disk
O n black disks in $\bigcirc=$ white disk
$H^{1}(\bigcirc, G) \cong G^{n-1}$ generalizes to

$$
H_{1}(\bigcirc, \mathcal{H}) \cong \mathcal{H}^{\otimes(n-1)}
$$

(allowed by: ordering along and across a path)
Move the black disks $\leadsto B_{n}$ acts on $H_{1}(\bigcirc, \bigcirc \mathcal{H})$

$$
=\text { a Hopf algebra }
$$

provided we know the maps (for nested disks) $H_{1}(\bigcirc, \bigcirc ; \mathcal{H}) \underset{\text { (mon.) }}{\longrightarrow} H_{1}(\bigcirc, \bigcirc ; \mathcal{H}) \underset{(F)}{\longrightarrow} H_{1}(\bigcirc, \bigcirc ; \mathcal{H})$

Quantization: obtain the B_{n} action via the KZ connection (or from a Drinfeld associator)

Little bit beyond 1: Easy Poisson groupoids

 or glorified quantization of twistsGroupoids have nerves, too - which Poisson structures on Lie groupoids can we quantize via BrSet \rightarrow ChordSet?

Little bit beyond 1: Easy Poisson groupoids

 or glorified quantization of twistsGroupoids have nerves, too - which Poisson structures on Lie groupoids can we quantize via BrSet \rightarrow ChordSet?

Easy (or semi-commutative) Poisson groupoids

a Lie groupoids 「 $\rightrightarrows M$ with a Poisson structure on 「 such that $\Gamma_{x, y} \subset \Gamma$ is a Poisson submanifold $\forall x, y \in M$ and s.t. the composition $\Gamma_{x, y} \times \Gamma_{y, z} \rightarrow \Gamma_{x, z}$ is a Poisson map

Little bit beyond 1: Easy Poisson groupoids

 or glorified quantization of twistsGroupoids have nerves, too - which Poisson structures on Lie groupoids can we quantize via BrSet \rightarrow ChordSet?

Easy (or semi-commutative) Poisson groupoids

a Lie groupoids $\Gamma \rightrightarrows M$ with a Poisson structure on 「 such that $\Gamma_{x, y} \subset \Gamma$ is a Poisson submanifold $\forall x, y \in M$ and s.t. the composition $\Gamma_{x, y} \times \Gamma_{y, z} \rightarrow \Gamma_{x, z}$ is a Poisson map

A braided lax-monoidal functor F : FinSet, ChordSet, $\operatorname{BrSet} \rightarrow \mathcal{C}$ s.t. $F(\bullet \bullet) \otimes_{F(\bullet)} F(\bullet \bullet) \otimes_{F(\bullet)} \cdots \otimes_{F(\bullet)} F(\bullet \bullet) \rightarrow F(\bullet n)$ is an iso

F is equivalent to a semi-commutative Hopf algebroid

Commutative algebra $B=F(\bullet)$, Poisson/NC algebra $A=F(\bullet \bullet)$, $\epsilon: A \rightarrow B$ (units*), central maps $\eta_{L, R}: B \rightrightarrows A$ (source*, target*), coassociative $\Delta: A \rightarrow A \otimes_{B} A$ (composition*), antipode $S: A \rightarrow A$

Little bit beyond 2: Braided Hopf algebras/oids

Braided Hopf algebras/oids

$F:$ ChordSet $\rightarrow \mathcal{C}$ with \mathcal{C} infinitesimally braided
\leadsto quantization of quasi-Poisson groups/groupoids

Example (Manin quadruples)

$\left(\mathfrak{d}, \mathfrak{g}, \mathfrak{h}, \mathfrak{h}^{*}\right): \mathfrak{d}=\mathfrak{g} \oplus \mathfrak{h} \oplus \mathfrak{h}^{*}$ as a vector space, $\mathfrak{h}^{\perp}=\mathfrak{g} \oplus \mathfrak{h}, \mathfrak{h}^{* \perp}=\mathfrak{g} \oplus \mathfrak{h}^{*}$
$C^{\infty}(H)$ is Poisson-Hopf in the iBMC $\mathcal{C}=U \mathfrak{g}$-Mod
(H is \mathfrak{g}-quasi-Poisson, $H \circledast H \rightarrow H$ is quasi-Poisson)
Quantization to a Hopf algebra in $\mathcal{C}=U \mathfrak{g}-\operatorname{Mod}_{\hbar}^{\Phi}$

Farther beyond ... maybe one day

(Every talk should mention higher structures)

Higher groupoids

A symmetric lax monoidal functor F : FinSet $\rightarrow \mathcal{C}$
$=$ a functor $F:$ FinSet $\rightarrow \operatorname{CommAlg}(\mathcal{C})$
$=$ the algebra of functions on (the nerve of) a higher groupoid

Farther beyond ... maybe one day

(Every talk should mention higher structures)

Higher groupoids

A symmetric lax monoidal functor $F:$ FinSet $\rightarrow \mathcal{C}$
$=$ a functor $F:$ FinSet $\rightarrow \operatorname{CommAlg}(\mathcal{C})$
$=$ the algebra of functions on (the nerve of) a higher groupoid

"Poisson" structures

What is a braided lax monoidal functor F : ChordSet $\rightarrow \mathcal{C}$?
F (a chord) : $F(X) \rightarrow F(X)$: a second order differential operator
(\Rightarrow a Poisson structure on $F(X)$, but more than that)

- What kind of "Poisson" structures are on the corresponding L_{∞}-algebras?
- What kind of objects are $F:$ BrSet $\rightarrow \mathcal{C}$?

Farther beyond ... maybe one day

(Every talk should mention higher structures)

Higher groupoids

A symmetric lax monoidal functor F : FinSet $\rightarrow \mathcal{C}$
$=$ a functor $F:$ FinSet $\rightarrow \operatorname{CommAlg}(\mathcal{C})$
$=$ the algebra of functions on (the nerve of) a higher groupoid

"Poisson" structures

What is a braided lax monoidal functor F : ChordSet $\rightarrow \mathcal{C}$?
$F($ a chord $): F(X) \rightarrow F(X)$: a second order differential operator
(\Rightarrow a Poisson structure on $F(X)$, but more than that)

- What kind of "Poisson" structures are on the corresponding L_{∞}-algebras?
- What kind of objects are $F:$ BrSet $\rightarrow \mathcal{C}$?

