# Quantization of Poisson-Lie groups and a little bit beyond

Pavol Ševera

Joint work with Ján Pulmann

## Deformation quantization problem for Hopf algebras

#### Ingredients

- a *commutative* Hopf algebra  $(\mathcal{H}, m_0, \Delta_0, S_0, 1, \epsilon)$
- a compatible Poisson bracket  $\{,\}:\mathcal{H}\otimes\mathcal{H}\to\mathcal{H}$   $(\Delta_0:\mathcal{H}\to\mathcal{H}\otimes\mathcal{H}\text{ is a Poisson algebra morphism})$

Typically  $\mathcal{H}=C^{\infty}(G)$ , in general  $\mathcal{H}$  in any  $\mathbb{Q}$ -linear SMC

## Deformation quantization problem for Hopf algebras

#### Ingredients

- a *commutative* Hopf algebra  $(\mathcal{H}, m_0, \Delta_0, S_0, 1, \epsilon)$
- a compatible Poisson bracket  $\{,\}: \mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$   $(\Delta_0: \mathcal{H} \to \mathcal{H} \otimes \mathcal{H} \text{ is a Poisson algebra morphism})$

Typically  $\mathcal{H} = C^{\infty}(G)$ , in general  $\mathcal{H}$  in any  $\mathbb{Q}$ -linear SMC

#### The problem

Find "universal" (functorial) deformations

$$m_{\hbar} = \sum_{n=0}^{\infty} \hbar^n m_n$$
  $\Delta_{\hbar} = \sum_{n=0}^{\infty} \hbar^n \Delta_n$   $S_{\hbar} = \sum_{n=0}^{\infty} \hbar^n S_n$ 

s.t.  $(\mathcal{H}, m_{\hbar}, \Delta_{\hbar}, S_{\hbar}, 1, \epsilon)$  is a Hopf algebra and  $m_1 - m_1^{op} = \{,\}$  [For  $\mathcal{H} = (U\mathfrak{g})^*$ : Etingof-Kazhdan 1995]

(not supposed to be understandable at this point)

#### Hopf holonomies on a disk ...



$$lacktriangledown = n$$
 black disks in  $\bigcirc$  = white disk  $H^1(\bigcirc, lacktriangledown; G) \cong G^{n-1}$ 

(not supposed to be understandable at this point)

#### Hopf holonomies on a disk . . .



lacktriangledown = n black disks in  $\bigcirc$  = white disk  $H^1(\bigcirc, lacktriangledown; G) \cong G^{n-1}$  generalizes to

$$H_1(\bigcirc, \bullet; \mathcal{H}) \cong \mathcal{H}^{\otimes (n-1)}$$

(allowed by: ordering along and across a path)

(not supposed to be understandable at this point)

#### Hopf holonomies on a disk . . .



lacktriangledown=n black disks in  $\bigcirc$  = white disk  $H^1(\bigcirc, lacktriangledown; G) \cong G^{n-1}$  generalizes to

$$H_1(\bigcirc, \bullet; \mathcal{H}) \cong \mathcal{H}^{\otimes (n-1)}$$

(allowed by: ordering along and across a path)

Move the black disks  $\rightsquigarrow B_n$  acts on  $H_1(\bigcirc, \bullet; \mathcal{H})$ 

(not supposed to be understandable at this point)

#### Hopf holonomies on a disk ...



lacktriangledown = n black disks in  $\bigcirc$  = white disk  $H^1(\bigcirc, lacktriangledown; G) \cong G^{n-1}$  generalizes to

$$H_1(\bigcirc, \bullet; \mathcal{H}) \cong \mathcal{H}^{\otimes (n-1)}$$

(allowed by: ordering along and across a path)

Move the black disks  $\rightsquigarrow B_n$  acts on  $H_1(\bigcirc, \bullet; \mathcal{H})$ 

 $\dots = a$  Hopf algebra



provided we know the maps (for nested disks)  $H_1(\mathbb{O}, \bullet; \mathcal{H}) \to H_1(\mathbb{O}, \bullet; \mathcal{H}) \to H_1(\mathbb{O}, \mathbb{O}; \mathcal{H})$ 

(not supposed to be understandable at this point)

#### Hopf holonomies on a disk . . .



lacktriangledown = n black disks in  $\bigcirc$  = white disk  $H^1(\bigcirc, lacktriangledown; G) \cong G^{n-1}$  generalizes to

$$H_1(\bigcirc, \bullet; \mathcal{H}) \cong \mathcal{H}^{\otimes (n-1)}$$

(allowed by: ordering along and across a path)

Move the black disks  $\rightsquigarrow B_n$  acts on  $H_1(\bigcirc, \bullet; \mathcal{H})$ 

 $\dots = a Hopf algebra$ 



provided we know the maps (for nested disks)  $H_1(\bigcirc, \bullet; \mathcal{H}) \to H_1(\bigcirc, \bullet; \mathcal{H}) \to H_1(\bigcirc, \bigcirc; \mathcal{H})$ 

Quantization: obtain the  $B_n$  action via the KZ connection (or from a Drinfeld associator)

## The nerve of a group *G*

holonomies in the "commutative world"

X a finite set

$$F(X) = \{g : X \times X \to G \mid g_{ij}g_{jk} = g_{ik} \& g_{ii} = 1 \, (\forall i, j, k \in X)\}$$

$$F(X) \cong G^{|X|-1}, \text{ e.g.} \quad \bullet \xrightarrow{g_{12}} \bullet \xrightarrow{g_{23}} \bullet \xrightarrow{g_{34}} \bullet \quad (|X| = 4)$$
functoriality:  $f : X \to Y \quad \leadsto \quad f^* : F(Y) \to F(X)$ 

$$F : \text{FinSet}^{op} \to \text{Set}$$

## The nerve of a group G

holonomies in the "commutative world"

X a finite set

$$F(X) = \{g : X \times X \to G \mid g_{ij}g_{jk} = g_{ik} \& g_{ii} = 1 \, (\forall i, j, k \in X)\}$$

$$F(X) \cong G^{|X|-1}, \text{ e.g.} \quad \bullet \xrightarrow{g_{12}} \bullet \xrightarrow{g_{23}} \bullet \xrightarrow{g_{34}} \bullet \quad (|X| = 4)$$
functoriality:  $f : X \to Y \quad \leadsto \quad f^* : F(Y) \to F(X)$ 

$$F : \text{FinSet}^{op} \to \text{Set}$$

#### From a nerve to its group

If F is the nerve of G then  $G = F(\bullet \bullet)$ 



## The nerve of a group G

holonomies in the "commutative world"

X a finite set

$$F(X) = \{g : X \times X \to G \mid g_{ij}g_{jk} = g_{ik} \& g_{ii} = 1 \, (\forall i, j, k \in X)\}$$

$$F(X) \cong G^{|X|-1}, \text{ e.g.} \quad \bullet \xrightarrow{g_{12}} \bullet \xrightarrow{g_{23}} \bullet \xrightarrow{g_{34}} \bullet \quad (|X| = 4)$$
functoriality:  $f : X \to Y \quad \leadsto \quad f^* : F(Y) \to F(X)$ 

$$F : \text{FinSet}^{op} \to \text{Set}$$

#### From a nerve to its group

If F is the nerve of G then  $G = F(\bullet \bullet)$  F is a nerve iff  $F(\bullet^n) \to F(\bullet \bullet)^{n-1}$  is a bijection
The product:  $F(\bullet \bullet) \times F(\bullet \bullet) \cong F(\bullet \bullet \bullet) \to F(\bullet \bullet)$ 

## Colliding braids and Hopf algebras

BrSet - "braided maps":



(The BMC generated by a commutative algebra)

## Colliding braids and Hopf algebras



(The BMC generated by a commutative algebra)



## Theorem (The nerve of a Hopf algebra)

Hopf algebras (with invertible S) in a BMC  $\mathcal C$  are equivalent to braided lax-monoidal functors  $F: \operatorname{BrSet} \to \mathcal C$  such that  $F(\bullet \bullet)^{n-1} \to F(\bullet^n)$  is an iso and  $1_{\mathcal C} \to F() \to F(\bullet)$  are isos

## Colliding braids and Hopf algebras



(The BMC generated by a commutative algebra)



### Theorem (The nerve of a Hopf algebra)

Hopf algebras (with invertible S) in a BMC  $\mathcal C$  are equivalent to braided lax-monoidal functors  $F: \operatorname{BrSet} \to \mathcal C$  such that  $F(\bullet \bullet)^{n-1} \to F(\bullet^n)$  is an iso and  $1_{\mathcal C} \to F() \to F(\bullet)$  are isos

$$\mathcal{H}=F(ulletullet),\ \Delta=igg|,\ m=igg|$$

Constructing the nerve of a Hopf algebra

$$F(\bullet^n) = \mathcal{H}^{n-1}$$

Constructing the nerve of a Hopf algebra

$$F(ullet^n)=\mathcal{H}^{n-1}$$
  $F(ullet):\mathcal{H}^3 o\mathcal{H}^2$  is

Constructing the nerve of a Hopf algebra

$$F(ullet^n)=\mathcal{H}^{n-1}$$
  $F(igwedge):\mathcal{H}^3 o\mathcal{H}^2$  is



#### Constructing the nerve of a Hopf algebra

Constructing the nerve of a Hopf algebra

a Hopf algebra  $\mathcal{H} \in \mathcal{C} \quad \rightsquigarrow \quad$  a functor  $F : \mathsf{BrSet} \to \mathcal{C}$ 

$$F(\bullet^n) = \mathcal{H}^{n-1} \qquad F(\bigcirc) : \mathcal{H}^3 \to \mathcal{H}^2 \quad \text{is}$$

$$c_{(1)} \qquad c_{(2)}$$

$$b_{(2)} \qquad b_{(1)}$$

F is braided lax monoidal:

 $a \otimes b \otimes c$ 

$$F(\bullet^m)F(\bullet^n)=\mathcal{H}^{m-1}\mathcal{H}^{n-1}\to F(\bullet^{m+n-1})=\mathcal{H}^{m+n-1}$$
: inserting 1

 $b_{(2)}^{S}c_{(1)} \otimes ab_{(1)}^{S}c_{(2)}$ 

## The semiclassical picture: FinSet + chord diagrams

Poisson Hopf algebras in terms of infinitesimal braids

ChordSet, the infinitesimally braided version of FinSet/BrSet:

## The semiclassical picture: FinSet + chord diagrams

Poisson Hopf algebras in terms of infinitesimal braids

ChordSet, the infinitesimally braided version of FinSet/BrSet:

### Theorem (The nerve of a Poisson Hopf algebra)

Poisson Hopf algebras in a (linear) SMC  $\mathcal C$  are equivalent to braided lax-monoidal functors  $F: \mathsf{ChordSet} \to \mathcal C$  such that  $F(\bullet \bullet)^{n-1} \to F(\bullet^n)$  is an iso and  $1_{\mathcal C} \to F() \to F(\bullet)$  are isos

$$\mathcal{H} = F(\bullet \bullet), \ \Delta =$$
 ,  $\{,\} =$ 

#### Quantization: KZ connection and associators

KZ connection becomes Gauss-Manin connection

#### Knizhnik-Zamolodchikov connection

$$A_n^{KZ} = \hbar \sum_{1 \le i \le j \le n} t^{ij} \frac{d(z_i - z_j)}{z_i - z_j}$$
  $dA_n^{KZ} + [A_n^{KZ}, A_n^{KZ}]/2 = 0$ 

#### Quantization of Poisson Hopf algebras

$$\mathsf{BrSet} \xrightarrow{P \exp \int A^{\mathsf{KZ}}} \mathsf{ChordSet} \xrightarrow{\mathsf{Poisson} \; \mathsf{Hopf}} \mathcal{C}$$

Better and easier: parenthesize the objects of BrSet, define the functor (Pa)BrSet  $\rightarrow$  ChordSet via

$$\swarrow\mapsto$$
  $\hookrightarrow$   $\circ$   $\exp(\hbar t^{12}/2)$   $\qquad$   $\searrow\mapsto$   $\qquad$   $\mid$   $\swarrow$   $\mid$   $\mapsto$   $\Phi(\hbar t^{12},\hbar t^{23})$ 

(I guess it's still not understandable)

#### Hopf holonomies on a disk . . .



$$lacktriangledown=n$$
 black disks in  $\bigcirc=$  white disk  $H^1(\bigcirc, lacktriangledown; G)\cong G^{n-1}$  generalizes to

$$H_1(\bigcirc, \bullet; \mathcal{H}) \cong \mathcal{H}^{\otimes (n-1)}$$

(allowed by: ordering along and across a path)

Move the black disks  $\rightsquigarrow B_n$  acts on  $H_1(\bigcirc, \bullet; \mathcal{H})$ 

## $\dots = a$ Hopf algebra



provided we know the maps (for nested disks)  $H_1(\bigcirc \bullet : \mathcal{H}) \longrightarrow H_1(\bigcirc \bullet : \mathcal{H}) \longrightarrow H_1(\bigcirc \bigcirc : \mathcal{H})$ 

$$H_1(\mathbb{O}, \bullet; \mathcal{H}) \xrightarrow{(\mathsf{mon.})} H_1(\mathbb{O}, \bullet; \mathcal{H}) \xrightarrow{(F)} H_1(\mathbb{O}, \mathbb{O}; \mathcal{H})$$

Quantization: obtain the  $B_n$  action via the KZ connection (or from a Drinfeld associator)

## Little bit beyond 1: Easy Poisson groupoids or glorified quantization of twists

Groupoids have nerves, too - which Poisson structures on Lie

groupoids can we quantize via BrSet  $\rightarrow$  ChordSet?

## Little bit beyond 1: Easy Poisson groupoids

or glorified quantization of twists

Groupoids have nerves, too - which Poisson structures on Lie groupoids can we quantize via  $BrSet \rightarrow ChordSet$ ?

### Easy (or semi-commutative) Poisson groupoids

a Lie groupoids  $\Gamma \rightrightarrows M$  with a Poisson structure on  $\Gamma$  such that  $\Gamma_{x,y} \subset \Gamma$  is a Poisson submanifold  $\forall x,y \in M$  and s.t. the composition  $\Gamma_{x,y} \times \Gamma_{y,z} \to \Gamma_{x,z}$  is a Poisson map

## Little bit beyond 1: Easy Poisson groupoids

or glorified quantization of twists

Groupoids have nerves, too - which Poisson structures on Lie groupoids can we quantize via  $BrSet \rightarrow ChordSet$ ?

## Easy (or semi-commutative) Poisson groupoids

a Lie groupoids  $\Gamma \rightrightarrows M$  with a Poisson structure on  $\Gamma$  such that  $\Gamma_{x,y} \subset \Gamma$  is a Poisson submanifold  $\forall x,y \in M$  and s.t. the composition  $\Gamma_{x,y} \times \Gamma_{y,z} \to \Gamma_{x,z}$  is a Poisson map

A braided lax-monoidal functor F: FinSet, ChordSet, BrSet  $\to \mathcal{C}$  s.t.  $F(\bullet \bullet) \otimes_{F(\bullet)} F(\bullet \bullet) \otimes_{F(\bullet)} \cdots \otimes_{F(\bullet)} F(\bullet \bullet) \to F(\bullet^n)$  is an iso

#### F is equivalent to a semi-commutative Hopf algebroid

Commutative algebra  $B = F(\bullet)$ , Poisson/NC algebra  $A = F(\bullet \bullet)$ ,  $\epsilon : A \to B$  (units\*), central maps  $\eta_{L,R} : B \rightrightarrows A$  (source\*,target\*), coassociative  $\Delta : A \to A \otimes_B A$  (composition\*), antipode  $S : A \to A$ 

## Little bit beyond 2: Braided Hopf algebras/oids

#### Braided Hopf algebras/oids

#### Example (Manin quadruples)

 $(\mathfrak{d},\mathfrak{g},\mathfrak{h},\mathfrak{h}^*)$ :  $\mathfrak{d}=\mathfrak{g}\oplus\mathfrak{h}\oplus\mathfrak{h}^*$  as a vector space,  $\mathfrak{h}^\perp=\mathfrak{g}\oplus\mathfrak{h},\ \mathfrak{h}^{*\perp}=\mathfrak{g}\oplus\mathfrak{h}^*$   $C^\infty(H)$  is Poisson-Hopf in the iBMC  $\mathcal{C}=U\mathfrak{g}$ -Mod (H is  $\mathfrak{g}$ -quasi-Poisson,  $H\circledast H\to H$  is quasi-Poisson) Quantization to a Hopf algebra in  $\mathcal{C}=U\mathfrak{g}$ -Mod $^\Phi_\hbar$ 

## Farther beyond ... maybe one day

(Every talk should mention higher structures)

#### Higher groupoids

A symmetric lax monoidal functor  $F : \mathsf{FinSet} \to \mathcal{C}$ 

- = a functor F: FinSet  $\rightarrow$  CommAlg( $\mathcal{C}$ )
- = the algebra of functions on (the nerve of) a higher groupoid

## Farther beyond ... maybe one day

(Every talk should mention higher structures)

#### Higher groupoids

A symmetric lax monoidal functor  $F : \mathsf{FinSet} \to \mathcal{C}$ 

- = a functor F : FinSet  $\rightarrow$  CommAlg( $\mathcal{C}$ )
- = the algebra of functions on (the nerve of) a higher groupoid

#### "Poisson" structures

What is a braided lax monoidal functor F: ChordSet  $\rightarrow C$ ?

 $F(a \text{ chord}): F(X) \to F(X): a \text{ second order differential operator}$ ( $\Rightarrow$  a Poisson structure on F(X), but more than that)

- What kind of "Poisson" structures are on the corresponding  $L_{\infty}$ -algebras?
- What kind of objects are  $F : BrSet \rightarrow C$ ?

## Farther beyond ... maybe one day

(Every talk should mention higher structures)

#### Higher groupoids

A symmetric lax monoidal functor  $F : \mathsf{FinSet} \to \mathcal{C}$ 

- = a functor F : FinSet  $\rightarrow$  CommAlg( $\mathcal{C}$ )
- = the algebra of functions on (the nerve of) a higher groupoid

#### "Poisson" structures

What is a braided lax monoidal functor F: ChordSet  $\rightarrow C$ ?

 $F(a \text{ chord}): F(X) \to F(X): a \text{ second order differential operator}$ ( $\Rightarrow$  a Poisson structure on F(X), but more than that)

- What kind of "Poisson" structures are on the corresponding  $L_{\infty}$ -algebras?
- What kind of objects are  $F : BrSet \rightarrow C$ ?