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Introduction

The term index theorems is usually used to describe the
equality of, on one hand, analytic invariants of certain
operators on smooth manifolds and, on the other hand,
topological/geometric invariants associated to their “symbols".
A convenient way of thinking about this kind of results is as
follows.

One starts with a C∗-algebra of operators A associated to some
geometric situation and a K -homology cycle (A, π,H,D),
where π : A→ B(H) is a ∗-representation of A on a Hilbert
space H and D is a Fredholm operator on H commuting with
the image of π modulo compact operators K. The explicit
choice of the operator D typically has some geometric/analytic
flavour, and, depending on the parity of the K -homology class,
H can have a Z/2Z grading such that π is even and D is odd.
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Introduction

Given such a (say even) cycle, an index of a reduction of D by
an idempotent in A⊗K defines a pairing of K -homology and
K -theory, i. e. the group homomorphism

KK0(C,A)× KK0(A,C) −→ Z. (1)

One can think of this as a Chern character of D defining a map

K0(A) −→ Z,

and the goal is to compute it explicitly in terms of some
topological data extracted from the construction of D.
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Example 1

A = C(X ), where X is a compact manifold and D is an elliptic
pseudodifferential operator acting between spaces of smooth
sections of a pair of vector bundles on X .

The number < ch(D), [1] > is the Fredholm index of D, i. e.
the integer

Ind(D) = dim(Ker(D))− dim(Coker(D))

and the Atiyah–Singer index theorem identifies it with the
evaluation of the Â-genus of T ∗X on the Chern character of
the principal symbol of D. This is the situation analysed in the
original papers of Atiyah and Singer.
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Example 2

A = C∗(F), where F is a foliation of a smooth manifold and D
is a transversally elliptic operator on X .

Everything is represented by concrete operators on a Hilbert
space H.

Suppose that a K0(A) class is represented by a projection
p ∈ A, where A is a subalgebra of A closed under holomorphic
functional calculus, so that the inclusion A ⊂ A induces an
isomorphism on K-theory. For appropriately chosen A, the fact
that D is transversally elliptic implies that the operator pDp is
Fredholm on the range of p. The corresponding integer

Ind{pDp : rg(p)→ rg(p)}

can be identified with a pairing of a certain cyclic cocycle
ch(D) on the algebra A with the Chern character of p in the
cyclic periodic complex of A.
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For a special class of hypo-elliptic operators the computation of
this integer is the context of the transversal index theorem of
A. Connes and H. Moscovici.
A highly non-trivial technical part of their work is a
construction of such an operator.
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Example 3

Suppose again that X is a smooth manifold. The natural class
of representatives of K -homology classes of C(X ) given by
operators of the form

D =
∑
γ∈Γ

Pγπ(γ),

where Γ is a discrete group acting on L2(X ) by Fourier integral
operators of order zero and Pγ is a collection of
pseudodifferential operators on X , all of them of the same
(non-negative) order.
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Suppose that the group acts freely, i.e. D 6= 0 whenever any of
Pγ ’s is non-zero. The principal symbol σΓ(D) of such a D is an
element of the C∗-algebra C(S∗X ) omax Γ, where S∗M is the
cosphere bundle of M. Invertibility of σΓ(D) implies that D is
Fredholm and the index theorem in this case would express
IndΓ(D) in terms of some equivariant cohomology classes of M
and an appropriate equivariant Chern character of σΓ(D).

In the case when Γ acts by diffeomorphisms of M this example
was studied by Savin, Schrohe, Sternin and by Perrot.
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A typical computation of index proceeds via a reduction of the
class of operators D under consideration to an algebra of
(complete) symbols, which can be thought of as a "formal
deformation" A~. Let us spend a few lines on a sketch of the
construction of A~ in the case when the operators in question
are differential operators on X .

Denote by DX the algebra of differential operators on X .
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Let D•X be the filtration by degree of DX . One constructs the
Rees algebra

R = {(a0, a1, . . .) | ak ∈ Dk
X}

with the product

(a0, a1, . . .)(b0, b1, . . .) = (a0b0, a0b1 +a1b0, . . . ,
∑

i+j=k
aibj , . . .).

The shift
~ : (a0, a1, . . .)→ (0, a0, a1, . . .)

makes R into an C[[~]]-module.
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The elements of R/~R have form of sequences

(σ0, σ1, σ2, . . .) where σk ∈ Dk/Dk−1 = Polk(T ∗X ),

where Polk(T ∗X ) is the space of smooth, fiberwise polynomial
functions of degree k on the cotangent bundle T ∗X . Hence

R/~R '
∏
k

Polk(T ∗X )

and a choice of a C[[~]]-linear isomorphism of R with∏
k Polk(T ∗X )[[~]] induces on

∏
k Polk(T ∗X )[[~]] an

associative, ~-bilinear product, easily seen to extend to
C∞(T ∗X )[[~]].

This is a "formal deformation of T ∗X". More generally,
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A formal deformation quantization of a symplectic manifold
(M, ω) is an associative C[[~]]-linear product ? on C∞(M)[[~]]
of the form

f ? g = fg + i~
2 {f , g}+

∑
k≥2

~kPk(f , g);

where {f , g} := ω(Iω(df ), Iω(dg)) is the canonical Poisson
bracket induced by the symplectic structure, Iω is the
isomorphism of T ∗M and TM induced by ω, and the Pk
denote bidifferential operators. We will also require that
f ? 1 = 1 ? f = f for all f ∈ C∞(M)[[~]]. We will use A~(M)
to denote the algebra (C∞(M)[[~]], ?). The ideal A~

c(M) in
A~(M), consisting of power series of the form

∑
k ~k fk , where

fk are compactly supported, has a unique (up to a
normalization) trace Tr with values in C[~−1, ~]] .
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Since the product in A~
c(M) is local, the computation of the

pairing of K -theory and cyclic cohomology of A~
c(M) reduces

to a differential-geometric problem and the result of the
resulting computation is the “algebraic index theorem".
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Back to the subject of this talk, the index of the operators of
the type

D =
∑
γ∈Γ

Pγπ(γ).
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It is not difficult to see that the index computations reduce to
the computation of the pairing of the trace (or some other
cyclic cocycle) with the K -theory of the symbol algebra, which,
in this case, is identified with a crossed product A~

c(M) o Γ.

• As cyclic periodic homology is invariant under
(pro-)nilpotent extensions, the result of the pairing
depends only on the ~ = 0 part of the K -theory of
A~

c(M) o Γ.
• The ~ = 0 part of the symbol algebra A~

c(M) o Γ is just
C∞c (M) o Γ, hence the Chern character of D, originally an
element of K-homology of the C(M), enters into the final
result only through a class in the equivariant cohomology
H∗Γ(M).
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• Cyclic cocycle on A~
c(M) o Γ.

For a group cocycle ξ ∈ Ck(Γ,C), set

Trξ(a0γ0 ⊗ . . .⊗ akγk) =
δe,γ0γ1...γk ξ(γ1, . . . , γk)Tr(a0γ0(a1) . . . (γ0γ1 . . . γk−1)(ak)).

• The object of interest - the pairing

Trξ : K0(A~
c(M) o Γ)→ C[~−1, ~]]
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The action of Γ on A~(M) induces (modulo ~) an action of Γ
on M by symplectomorphisms. Let σ be the “principal symbol"
map:

A~(M)→ A~(M)/~A~(M) ' C∞(M).

It induces a homomorphism

σ : A~(M) o Γ −→ C∞(M) o Γ,

still denoted by σ. Let

Φ: H•Γ(M) −→ HC•per (C∞c (M) o Γ)

be the canonical map (first constructed by Connes).
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The index theorem

The main result is the following.

Let e, f ∈ MN
(
A~(M)

)
be a couple of idempotents such that

the difference e − f ∈ MN
(
A~

c(M) o Γ
)
is compactly

supported. Let [ξ] ∈ Hk(Γ,C) be a group cohomology class.
Then [e]− [f ] is an element of K0(A~

c(M) o Γ) and its pairing
with the cyclic cocycle Trξ is given by

< Trξ, [e]− [f ] >=
〈

Φ
(
ÂΓeθΓ [ξ]

)
, ch([σ(e)]− [σ(f )])

〉
. (2)

Here ÂΓ ∈ H•Γ(M) is the equivariant Â-genus of M,
θΓ ∈ H•Γ(M) is the equivariant characteristic class of the
deformation A~(M).
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Deformation quantization and Gelfand Fuks

A deformation quantization of a symplectic manifold A~(M)
can be seen as the space of flat sections of a flat connection
∇F on the bundle of Weyl algebras over M constructed from
the bundle of symplectic vector spaces T ∗M → M.

W //W

��
M.

The fiber of W is isomorphic to the Weyl algebra

W = {x̂1, x̂2 . . . , x̂n, ξ̂1, ξ̂2, . . . , ξ̂n | [ξ̂i , x̂j ] = ~δi ,j}

and ∇F is a connection with values in the Lie algebra g of
derivations of W, equivariant with respect to a maximal
compact subgroup K of the structure group of T ∗M.
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Deformation quantization and Gelfand Fuks

Suppose that L is a (g,K )-module. The Gelfand–Fuks
construction provides a sheaf L on M and a complex
(Ω(M,L),∇F ) of L-valued differential forms with a differential
∇F satisfying ∇2

F = 0. Let us denote the corresponding
cohomology spaces by H•(M,L). The Gelfand–Fuks
construction also provides a morphism of complexes

GF : C •
Lie(g,K ;L)) −→ Ω•(M,L)

In many of our examples L and, therefore, L is a complex.
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Deformation quantization and Gelfand Fuks

Some examples.

• Quantization: L = W, A~(M) ' (Ω(M,W),∇F )
• Cohomology: L = C, (Ω(M), d) ' (Ω(M,C),∇F )
• L = CCper

• (O),
(CCper

• (C∞(M), b+uB) ' (Ω(M,CCper
• (O)), b+uB+∇F )

• L = CCper
• (W),

(CCper
• (A~(M), b+uB) ' (Ω(M,CCper

• (W)), b+uB+∇F ).
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Lie algebra theorem

First a "microlocal" version of the index theorem.

Let L• = Hom−•(CCper
• (W), Ω̂−•[~−1, ~]][u−1, u]][2d ]). There

exist two elements τ̂a and τ̂t in the hypercohomology group
H0

Lie(g,K ;L•) such that the following holds.

τ̂a =
∑
p≥0

[
Âeθ̂

]
2p

up τ̂t ,

where
[
Âeθ̂

]
2p

is the component of degree 2p of a certain
hypercohomology class.

Note that H•Lie(g,K ;L•) is a H•Lie(g,K ;C[[~]])-module. θ̂ isthe
class of the Lie algebra extension

1
~
C[[~]]→W→ g.



Algebraic
index

theorems

Ryszard Nest

Introduction

The index
theorem

Deformation
quantization
and Gelfand
Fuks

Lie algebra
theorem

AS-CM
example

About the
proof

AS-CM example

Let A~(M) be the deformation of M = T ∗X associated to
symbol calculus and ĉ ∈ H•Lie(g,K ;C). Then

GF : Ω•(M,L•)→ Hom((CCper
• (A~(M), b + uB)), (Ω(M), d)),

and one checks the following.
1 GF (θ̂) is the characteristic class of the deformation
2 GF (ĉ) =: c ∈ H•(M)
3 GF

(
Âeθ̂

)
=: ÂM

4 GF (τ̂t)(σ(p)− σ(q)) = ch(p0)− ch(q0))
5
∫

M GF (ĉ τ̂a)(σ(p)− σ(q)) = Trc(p − q)
6 Index Theorem

Trc(p − q) =
∫

M
c(ch(p0)− ch(q0))ÂM .
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About the proof

The proof of the theorem about the crossed product follows
similar lines.
Let EΓ be a simplicial model for the universal three action of Γ.
The lift π∗W of the Weyl bundle of M under the projection
π : M × EΓ→ M admits an action of Γ. Moreover the
connection ∇F has a Γ-equivariant flat extension ∇Γ to π∗W
and the Gelfand -Fuks map still exists in this context and all of
the above constructions have parallels in this case.
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