Poisson structures on differentiable stacks

Camille Laurent-Gengoux

Université de Lorraine, Metz

joint work with Francesco Bonechi, Nicola Ciccoli and Ping Xu

September 13, 2018

Camille Laurent-Gengoux (U. Lorraine)

Quasi-Poisson groupoids and their Morita equivalences

- Definitions
- Polyvector fields on a differentiable stack
- Prom cotangent to tangent: VB groupoids and representations up to homotopy
- 3 Invertible Poisson structures on a differentiable stacks, and ranks

Claim: *differentiable stacks are a good manner to represent singular spaces.*

As spaces, they should come with a notion of:

- vector fields,
- 2 polyvector fields

Opisson structures

- Inon-degenerate Poisson structures (rank of a Poisson structure)
- otangent and tangent
- ... and Poisson structures should induce a map from cotangent to tangent.

Last, examples should exist.

A *differentiable stack* is a Morita equivalence class of Lie groupoids. How to define a notion of *blablabla* on a differentiable stack? First, define the *blablabla* of a Lie groupoid $\Gamma \rightrightarrows M$. Then

- Check that ME Lie groupoids have the <u>same</u> blablabla.
 - Ex: dimension of the stack, coming from dim(Γ⇒M) := 2dim(M) - dim(Γ)
- One Check that ME Lie groupoids have the isomorphic blablabla's.
 - Ex: most cohomologies of Lie groupoids.
- Solution State a blablabla to a Lie groupoid Γ⇒M. Check that different choices give homotopy equivalent blablabla's. Check that a ME induces a homotopy equivalence of blablabla's.

Towards Poisson structures on differentiable stacks

Idea one

Take *blablabla* to be multiplicative Poisson structures, as in Mackenzie-Xu.

Does it work?

No, this is not well behaved under Morita equivalence.

Idea two.

Consider quasi-Poisson Lie groupoids.

Does it work?

No, this is not well behaved under Morita equivalence.

Idea three

Consider quasi-Poisson Lie groupoids up to twists.

Camille Laurent-Gengoux (U. Lorraine)

Definition (ILX)

- Let $\Gamma \rightrightarrows M$ be a Lie groupoid.
 - A quasi-Poisson structure on $\Gamma \rightrightarrows M$ is a pair (Π, Λ) , with Π multiplicative bivector field and $\Lambda \in \Gamma(\wedge^3 A)$ s.t.

$$\frac{1}{2}[\Pi,\Pi] = \overleftarrow{\Lambda} + \overrightarrow{\Lambda} , \quad [\overleftarrow{\Lambda},\Pi] = 0 .$$
 (1)

O Two quasi-Poisson structures (Π₁, Λ₁) and (Π₂, Λ₂) on Γ are said to be *twist equivalent* if there exists a section B ∈ Γ(Λ²a), called the *twist*, such that

$$\Pi_2 = \Pi_1 + \overleftarrow{B} + \overrightarrow{B}, \quad \Lambda_2 = \Lambda_1 - \delta_{\Pi_1}(B) - \frac{1}{2}[B, B].$$
(2)

A first result

Theorem

Morita equivalent Lie groupoids have isomorphic sets of quasi-Poisson structures up to twists.

Enough to define Poisson structures on a differentiable stack.

Unfortunatly...

Meaning is still missing.

Let us have L_{∞} -algebras into the picture.

There is a $\mathbb{Z}\text{-}\mathsf{graded}$ crossed module structure on:

 $\Gamma(\wedge A)[2] \oplus \mathcal{X}_{mult}(\Gamma)[1].$

Definition

See it as a \mathbb{Z} -graded Lie-2 algebra called *polyvector fields on* $\Gamma \rightrightarrows M$.

Remark: its Maurer-Cartan elements are quasi-Poisson structures on $\Gamma \rightrightarrows M$. Its gauges are the twists.

Theorem (Non-trivial result)

A Morita equivalence of Lie groupoids induces an unique up to homotopy \mathbb{Z} -graded Lie-2 algebra quasi-isomorphisms between their polyvector fields.

The previous theorem is a Corollary.

Definition

A VB groupoid is a groupoid in the category of vector bundles.

Examples. Let $\Gamma \rightrightarrows M$ be a Lie groupoid:

Name	Tangent groupoid	Cotangent groupoid
	$T\Gamma \rightrightarrows TM$	$T^*\Gamma \rightrightarrows A^*$
Units	TM	A*
Core	A	T*M

Definition

VB groupoids Morita equivalence is a Morita equivalence + linearity conditions.

Morita equivalent Lie groupoids have VB Morita equivalent tangent and cotangent groupoids. This defines the tangent and cotangent stacks of a stack.

VB groupoids 2-category

VB groupoids come with natural notions of:

- morphisms
- In homotopies of morphisms
- Morita equivalences of morphisms

Proposition

- For (π, Λ) quasi-Poisson on Γ⇒M, π[#]: T*Γ → TΓ is a morphism of BV groupoids.
- Sor (π_i, Λ_i), i = 1,2 quasi-Poisson on Γ⇒M, π[#]_i : T*Γ → TΓ are homotopic morphisms.
- For (π_i, Λ_i) quasi-Poisson on $\Gamma_i \rightrightarrows M_i$, that correspond one to the other through a Morita equivalence, $\pi_i^{\#} : T^*\Gamma_i \rightarrow T\Gamma_i$ are Morita equivalent morphisms.

Hence Poisson structures on stacks induce a map from cotanegtn stack to tangent stacks.

Camille Laurent-Gengoux (U. Lorraine)

Gracia-Saz and Mehta found a dictionnary between

- (i) VB-groupoids over $\Gamma \rightrightarrows M$
- (ii) representations up to homotopies of $\Gamma \rightrightarrows M$.

Tangent groupoid/cotangent groupoids correspond to tangent complex and cotangent complex.

Proposition

For (π_i, Λ_i) quasi-Poisson on $\Gamma_i \rightrightarrows M_i$, that correspond one to the other through a Morita equivalence, the induced maps from cotangent to tangent complexes are homotopy equivalent.

Hence Poisson structures on stacks induce a map from cotangent complex to tangent complex.

Camille Laurent-Gengoux (U. Lorraine)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○