Cohomology of Lie algebroids on schemes

Volodya Rubtsov

LAREMA, UMR 6093 du CNRS, Université d'Angers ITEP, Theory Division, Moscow Center of Integrable Systems, Demidov State University, Yaroslavl

Rome, September 14, 2018

X: a differentiable manifold, or complex manifold, or a smooth noetherian separated scheme over an algebraically closed field \Bbbk of characteristic zero.

Lie algebroid: a vector bundle/coherent sheaf \mathscr{C} with a morphism of \mathscr{O}_X -modules $a \colon \mathscr{C} \to \Theta_X$ and a k-linear Lie bracket on the sections of \mathscr{C} satisfying

[s, ft] = f[s, t] + a(s)(f) t

for all sections s, t of \mathscr{C} and f of \mathscr{O}_X .

- a is a morphism of sheaves of Lie k-algebras
- ker *a* is a bundle of Lie \mathcal{O}_X -algebras

- A sheaf of Lie algebras, with a = 0
- Θ_X , with a = id
- More generally, foliations, i.e., a is injective
- Poisson structures $\Omega^1_X \xrightarrow{\pi} \Theta_X$,

Poisson-Nijenhuis bracket

$$\{\omega, \tau\} = \mathsf{Lie}_{\pi(\omega)}\tau - \mathsf{Lie}_{\pi(\tau)}\omega - d\pi(\omega, \tau)$$

 $\mathsf{Jacobi identity} \Leftrightarrow \llbracket \! [\![\pi, \pi]\!] = 0$

• Atiyah algebroid of a vector bundle/coherent sheaf &

$$0 \longrightarrow End(\mathscr{E}) \longrightarrow \mathscr{D}_{\mathscr{E}} \xrightarrow{\sigma} \Theta_X \longrightarrow 0$$

 $\mathscr{D}_{\mathscr{E}}$: sheaf of 1-st order differential operators on \mathscr{E} with scalar symbol. If \mathscr{E} is locally free:

$$D(s)^{lpha} = \sum_{i,eta} A(z)^{lpha i}_{eta} \, rac{\partial s^{eta}}{\partial z^i} + \sum_{eta} B(z)^{lpha}_{eta} \, s^{eta}$$

D has scalar symbol if

$$egin{aligned} & A(z)^{lpha i}_eta &= \delta^lpha_eta\, v^i(z) \ & \sigma(D) &= v \quad ext{or} \quad \sigma_\xi(D) &= \xi(v) \end{aligned}$$

 $f: \mathscr{C} \to \mathscr{C}'$ a morphism of \mathscr{O}_X -modules & sheaves of Lie *k*-algebras

 \Rightarrow ker f is a bundle of Lie algebras

A B M A B M

A a finitely generated commutative, associative unital algebra over a field \Bbbk

Lie-Rinehart algebra over (\mathbb{k}, A) : a pair (L, a) where

- L is an A-module equipped with a k-linear Lie algebra bracket $\{, \}$
- a: L → Der_k(A) is a representation of L in Der_k(A) (the anchor) that satisfies the Leibniz rule

$${s, ft} = f{s, t} + a(s)(f) t$$

where $s, t \in L$ and $f \in A$.

Derived functors

 \mathfrak{A} an abelian category, $A \in \mathsf{Ob}(\mathfrak{A})$

 $\mathsf{Hom}(-, A) : \to \mathfrak{Ab}$

is a (contravariant) left exact functor, i.e., if

 $0 \rightarrow B' \rightarrow B \rightarrow B'' \rightarrow 0$

is exact, then

 $0 \rightarrow \operatorname{Hom}(B'', A) \rightarrow \operatorname{Hom}(B, A) \rightarrow \operatorname{Hom}(B', A)$

is exact

Definition

 $I \in Ob(\mathfrak{A})$ is injective if Hom(-, I) is exact, i.e., if

```
0 
ightarrow \mathsf{Hom}(B'',I) 
ightarrow \mathsf{Hom}(B,I) 
ightarrow \mathsf{Hom}(B',I) 
ightarrow \mathsf{0}
```

is exact

Definition

The category ${\mathfrak A}$ has enough injectives if every object in ${\mathfrak A}$ has an injective resolution

$$0 \to A \to I^0 \to I^1 \to I^2 \to \dots$$

 ${\mathfrak A}$ abelian category with enough injectives

 $F: \mathfrak{A} \to \mathfrak{B}$ left exact functor

Derived functors $R^i F \colon \mathfrak{A} \to \mathfrak{B}$

 $R^i F(A) = H^i(F(I^{\bullet}))$

Example: Sheaf cohomology. X topological space, $\mathfrak{A} = \mathfrak{Sh}_X$, $\mathfrak{B} = \mathfrak{Ab}$, $F = \Gamma$ (global sections functor)

 $R^{i}\Gamma(\mathscr{F})=H^{i}(X,\mathscr{F})$

Hyperfunctors

 \mathfrak{A} category with enough injectives, $F: \mathfrak{A} \to \mathfrak{B}$ left exact functor \mathscr{K}^{\bullet} complex of objects in \mathfrak{A} , \mathscr{I}^{\bullet} quasi-isomorphic injective complex

(i.e. there is a morphism $\mathscr{K}^{\bullet} \to \mathscr{I}^{\bullet}$ which is an isomorphism in cohomology)

$$\mathbb{R}^i F(\mathscr{K}^{\bullet}) = H^i(F(\mathscr{I}^{\bullet}))$$

Example (Hypercohomology): $\mathfrak{A} = \mathfrak{Sh}_X$, $\mathfrak{B} = \mathfrak{Ab}$, $F = \Gamma$ (global sections functor)

 $\mathscr{K}^{ullet} \in K_+(\mathfrak{Sh}_X)$

$$\mathbb{H}^{i}(X, \mathscr{K}^{\bullet}) = H^{i}(\Gamma(\mathscr{I}^{\bullet}))$$

• • = • • = •

(Hyper)cohomology of a Lie algebroid

 ${\mathscr C}$ Lie algebroid over a scheme, $(
ho, {\mathscr M})$ a representation

 $\Omega(\mathscr{C},\mathscr{M})^{\bullet} = \mathscr{M} \otimes_{\mathscr{O}_{X}} \wedge_{\mathscr{O}_{X}}^{\bullet} \mathscr{C}^{*}, \qquad \partial_{\mathscr{C},\mathscr{M}} \colon \Omega(\mathscr{C},\mathscr{M})^{\bullet} \to \Omega(\mathscr{C},\mathscr{M})^{\bullet+1}$

$$\begin{array}{ll} (\partial_{\mathscr{C},\mathscr{M}}\xi)(s_1,\ldots,s_{p+1}) &=& \sum_{i=1}^{p+1} (-1)^{i-1} \rho(s_i)(\xi(s_1,\ldots,\hat{s}_i,\ldots,s_{p+1})) \\ &+& \sum_{i< j} (-1)^{i+j} \xi([s_i,s_j],\ldots,\hat{s}_i,\ldots,\hat{s}_j,\ldots,s_{p+1}) \end{array}$$

for s_1, \ldots, s_{p+1} sections of \mathscr{C} , and ξ a section of $\Omega^p_{\mathscr{C}}$ \Rightarrow hypercohomology $\mathbb{H}^{\bullet}(\Omega^{\bullet}_{\mathscr{C}}, \partial_{\mathscr{C}, \mathscr{M}}) =: \mathbb{H}^{\bullet}(\mathscr{C}; \mathscr{M})$ In the previous examples this reduces to

- Cartain-Eilenberg Lie algebra cohomology
- de Rham cohomology
- foliated de Rham cohomology
- Lichnerowicz-Poisson cohomology

The Lie algebroid cohomology of the Atiyah algebroid of a vector bundle was studied in our joint paper (U. Bruzzo, V. R, Cent. Eur. J. Math. 10 (2012) 1442–1454.)

From now on, X will be a scheme (with the previous hypotheses) Given a Lie algebroid \mathscr{C} there is a notion of enveloping algebra $\mathfrak{U}(\mathscr{C})$

It is a sheaf of associative \mathscr{O}_X -algebras with a k-linear augmentation $\mathfrak{U}(\mathscr{C}) \to \mathscr{O}_X$

 $\mathsf{Rep}(\mathscr{C})\simeq\mathfrak{U}(\mathscr{C}) extsf{-mod}$

 $\Rightarrow \mathsf{Rep}(\mathscr{C})$ has enough injectives

• • = • • = •

A k-algebra with an algebra monomorphism $\imath: A \to \mathfrak{U}(L)$ and a k-module morphism $\jmath: L \to \mathfrak{U}(L)$, such that

$$\begin{split} [\jmath(s), \jmath(t)] - \jmath([s,t]) &= 0, \quad s, t \in L, \\ [\jmath(s), \imath(f)] - \imath(a(s)(f)) &= 0, \quad s \in L, f \in A \quad (*) \end{split}$$

Construction: standard enveloping algebra $U(A \rtimes L)$ of the semi-direct product k-Lie algebra $A \rtimes L$

 $\mathfrak{U}(L) = U(A \rtimes L)/V, \qquad V = \langle f(g,s) - (fg,fs) \rangle$

- $\mathfrak{U}(L)$ is an *A*-module via the morphism \imath
- due to (*) the left and right A-module structures are different
- morphism ε: 𝔅(L) → 𝔅(L)/I = A (the augmentation morphism) where I is the ideal generated by 𝔅(L). Note that ε is a morphism of 𝔅(L)-modules but not of A-modules, as ε(fs) = a(s)(f) when f ∈ A, s ∈ L.

Lie alg. cohomology as derived functor

Given a representation (ρ, \mathscr{M}) of \mathscr{M} define

 $\mathscr{M}^{\mathscr{C}}(U) = \{m \in \mathscr{M}(U) \mid \rho(\mathscr{C})(m) = 0\}$

and a left exact functor

 $I^{\mathscr{C}} \colon \operatorname{Rep}(\mathscr{C}) \to \mathbb{k}\text{-mod}$ $\mathscr{M} \mapsto \Gamma(X, \mathscr{M}^{\mathscr{C}})$

Theorem (Ugo Bruzzo 2016¹)

If \mathscr{C} is locally free

$$\mathbb{H}^{\bullet}(\mathscr{C};\mathscr{M})\simeq R^{\bullet}I^{\mathscr{C}}(\mathscr{M})$$

(¹) J. of Algebra **483** (2017) 245–261

Proof

A δ -functor is a collection of functors $\{S^i : \mathfrak{A} \to \mathfrak{B}\}$ such that for every exact sequence $0 \to A \to B \to C \to 0$ in \mathfrak{A} there are morphisms $\sigma^i : S^i(C) \to S^{i+1}(A)$ giving rise to a long exact sequence

$$0 o S^0(A) o S^0(B) o S^0(C) \xrightarrow{\sigma^0} S^1(A)$$

 $o S^1(B) o S^1(C) \xrightarrow{\sigma^1} S^1(A) o \dots$

functorial w.r.t. morphisms of exact sequences

Theorem If $\{S^{\bullet}\}, \{T^{\bullet}\}$ are δ -functors $\mathfrak{A} \to \mathfrak{B}$ such that • $S^{i}(I) = T^{i}(I) = 0$ for all i > 0 when I is an injective object • $S^{0} \simeq T^{0}$ then $S^{i} \simeq T^{i}$ for all $i \ge 0$.

We apply this to the functors $I^{\mathscr{C}}$ and

 $\mathbb{H}^{i}(\mathscr{C};-)\colon \operatorname{Rep}(\mathscr{C}) \to \Bbbk\operatorname{-mod}$

When \mathscr{C} is not locally free this method only provides morphisms

 $R^{i}I^{\mathscr{C}}(\mathscr{M}) \to H^{i}(\mathscr{C};\mathscr{M})$

Grothendieck's thm about composition of derived functors

 $\mathfrak{A}\xrightarrow{F}\mathfrak{B}\xrightarrow{G}\mathfrak{C}$

- $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$, abelian categories
- $\mathfrak{A}, \mathfrak{B}$ with enough injectives

F and *G* left exact, *F* sends injectives to *G*-acyclics (i.e., $R^i G(F(I)) = 0$ for i > 0 when *I* is injective)

Theorem

For every object A in \mathfrak{A} there is a spectral sequence abutting to $R^{\bullet}(G \circ F)(A)$ whose second page is

$$E_2^{pq} = R^p F(R^q G(A))$$

Local to global

Grothendieck's theorem on the derived functors of a composition of functors implies:

Theorem (Local to global spectral sequence)

There is a spectral sequence, converging to $\mathbb{H}^{\bullet}(\mathcal{C}; \mathcal{M})$, whose second term is

$$E_2^{pq} = H^p(X, \mathscr{H}^q(\mathscr{C}; \mathscr{M}))$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Hochschild-Serre

Extension of Lie algebroids

 $0 \to \mathscr{K} \to \mathscr{E} \to \mathscr{Q} \to 0$

 \mathscr{K} is a sheaf of Lie \mathscr{O}_X -algebras

Moreover, the sheaves $\mathscr{H}^q(\mathscr{K};\mathscr{M})$ are representations of \mathscr{Q}

Theorem (Hochschild-Serre type spectral sequence)

For every representation \mathscr{M} of \mathscr{E} there is a spectral sequence E converging to $\mathbb{H}^{\bullet}(\mathscr{E}; \mathscr{M})$, whose second page is

$$E_2^{pq} = \mathbb{H}^p(\mathscr{Q}; \mathscr{H}^q(\mathscr{K}; \mathscr{M})).$$

An extension

$$0 \to \mathscr{K} \to \mathscr{E} \xrightarrow{\pi} \mathscr{Q} \to 0 \tag{1}$$

defines a morphims

 $\alpha: \mathscr{Q} \to \mathcal{O}ut(Z(\mathscr{K}))$ $\alpha(x)(y) = \{y, x'\} \quad \text{where} \quad \pi(x') = x$ (2)

The extension problem is the following:

Given a Lie algebroid \mathscr{Q} , a coherent sheaf of Lie \mathscr{O}_X -algebras \mathscr{K} , and a morphism α as in (2), does there exist an extension as in (1) which induces the given α ?

We assume \mathcal{Q} is locally free

Abelian extensions

If $\mathscr K$ is abelian, $(\mathscr K,\alpha)$ is a representation of $\mathscr Q$ on $\mathscr K$, and one can form the semidirect product

 $\mathscr{E} = \mathscr{K} \rtimes_{\alpha} \mathscr{Q},$

$$\begin{split} \mathscr{E} &= \mathscr{K} \oplus \mathscr{Q} \quad \text{as } \mathscr{O}_X\text{-modules,} \\ \{(\ell, x), \, (\ell', x')\} &= (\alpha(x)(\ell') - \alpha(x')(\ell), \{x, x'\}) \end{split}$$

Theorem (²)

If \mathscr{K} is abelian, the extension problem is unobstructed; extensions are classified up to equivalence by the hypercohomology group $\mathbb{H}^2(\mathscr{Q}; \mathscr{K})^{(1)}_{\alpha}$

(²) U.Bruzzo, I. Mencattini, V. R. and P. Tortella, Nonabelian holomorphic Lie algebroid extensions, Internat. J. Math. **26** (2015) 1550040

 \mathscr{M} a representation of a Lie algebroid \mathscr{C} . Sharp truncation of the Chevalley-Eilenberg complex $\sigma^{\geq 1} \Lambda^{\bullet} \mathscr{C}^* \otimes \mathscr{M}$ defined by

$$0 \longrightarrow \mathscr{C}^* \otimes \mathscr{M} \longrightarrow \Lambda^2 \mathscr{C}^* \otimes \mathscr{M} \longrightarrow \cdots$$

We denote $\mathbb{H}^{i}(\mathscr{C};\mathscr{M})^{(1)} := \mathbb{H}^{i}(X, \sigma^{\geq 1} \Lambda^{\bullet} \mathscr{C}^{*} \otimes \mathscr{M})$

Derivation of \mathscr{C} in \mathscr{M} : morphism $d : \mathscr{C} \to \mathscr{M}$ such that $d(\{x, y\}) = x(d(y)) - y(d(x))$

Proposition

The functors $\mathbb{H}^{i}(\mathscr{C}; -)^{(1)}$ are, up to a shift, the derived functors of

$$\mathsf{Der}(\mathscr{C}; -): \mathsf{Rep}(\mathscr{C}) \to \Bbbk\operatorname{-\mathbf{mod}}$$

 $\mathscr{M} \mapsto \mathsf{Der}(\mathscr{C}, \mathscr{M})$

i.e.,

$$R^i \operatorname{Der}(\mathscr{C}; -) \simeq \mathbb{H}^{i+1}(\mathscr{C}; -)^{(1)}$$

Realize the hypercohomology using Čech cochains: if \mathscr{U} is an affine cover of X, and \mathscr{F}^{\bullet} a complex of sheaves on X, then $\mathbb{H}^{\bullet}(X, \mathscr{F}^{\bullet})$ is isom. to the cohomology of the total complex T of

 $K^{p,q} = \check{C}^p(\mathscr{U},\mathscr{F}^q)$

$$0 \longrightarrow \mathscr{K}_{|U_i} \longrightarrow \mathscr{E}_{|U_i} \xrightarrow{\pi} \mathscr{Q}_{|U_i} \longrightarrow 0$$
 (3)

If $U_i \in \mathscr{U}$, $\operatorname{Hom}(\mathscr{Q}_{|U_i}, \mathscr{E}_{|U_i}) \to \operatorname{Hom}(\mathscr{Q}_{|U_i}, \mathscr{Q}_{|U_i})$ is surjective, so that one has splittings s_i

$$\{\phi_{ij} = s_i - s_j\} \in \check{C}^1(\mathscr{U}, \mathscr{K} \otimes \mathscr{Q}^*)$$

This is a 1-cocycle, which describes the extension as an extension of \mathcal{O}_X -modules

• • = • • = •

$$0 o \mathscr{K}(U_i) o \mathscr{E}(U_i) o \mathscr{Q}(U_i) o 0$$

is an exact sequence of Lie-Rinehart algebras (over $(\mathbb{k}, \mathcal{O}_X(U_i))$) which is described by a 2-cocycle ψ_i in the Chevalley-Eilenberg (-Rinehart) cohomology of $\mathscr{Q}(U_i)$ with coefficients in $\mathscr{K}(U_i)$

$$(\phi,\psi)\in\check{\mathsf{C}}^1(\mathscr{U},\mathscr{K}\otimes\mathscr{Q}^*)\oplus\check{\mathsf{C}}^0(\mathscr{U},\mathscr{K}\otimes {\wedge}^2\mathscr{Q}^*)={T}^2$$

$$\delta \phi = 0, \qquad d\phi + \delta \psi = 0, \qquad d\psi = 0$$

 \Rightarrow cohomology class in $\mathbb{H}^2(\mathscr{Q}; \mathscr{K})^{(1)}_{\alpha}$

The nonabelian case

Theorem $(^{2,3})$

If \mathscr{K} is nonabelian, the extension problem is obstructed by a class $\mathbf{ob}(\alpha)$ in $\mathbb{H}^{3}(\mathscr{Q}; Z(\mathscr{K}))^{(1)}_{\alpha}$.

If $\mathbf{ob}(\alpha) = 0$, the space of equivalence classes of extensions is a torsor on $\mathbb{H}^2(\mathscr{Q}; Z(\mathscr{K}))^{(1)}_{\alpha}$.

Proof

 \mathscr{Q} can be written as a quotient of a free Lie algebroid \mathscr{F}

(³) E. Aldrovandi, U.Bruzzo, V. R., Lie algebroid cohomology and Lie algebroid extensions, J. of Algebra 2018

 $0 \to \mathcal{N} \to \mathfrak{U}(\mathscr{F}) \to \mathfrak{U}(\mathscr{Q}) \to 0$

Øx

$$\widetilde{\mathcal{N}^{i}} = \mathcal{N}^{i} / \mathcal{N}^{i+1}, \qquad \widetilde{\mathcal{J}^{i}} = \mathcal{N}^{i} \mathcal{J} / \mathcal{N}^{i+1} \mathcal{J}, \quad \text{for } i = 0, \dots$$

Locally free resolution

$$\cdots \to \widetilde{\mathscr{N}}^2 \to \widetilde{\mathscr{J}}^1 \to \widetilde{\mathscr{N}}^1 \to \widetilde{\mathscr{J}}^0 \to \mathscr{J} \to 0$$

As $\operatorname{Hom}_{\mathfrak{U}(\mathscr{Q})}(\mathscr{J}, Z(\mathscr{K})) \simeq \operatorname{Der}(\mathscr{Q}, Z(\mathscr{K}))$, applying the functor $\operatorname{Hom}_{\mathfrak{U}(\mathscr{Q})}(-, Z(\mathscr{K}))$ we obtain

 $0 \to \mathsf{Der}(\mathscr{Q}, Z(\mathscr{K})) \to \mathsf{Hom}_{\mathfrak{U}(\mathscr{Q})}(\widetilde{\mathscr{J}}^{0}, Z(\mathscr{K})) \xrightarrow{d_{1}} \\ \mathsf{Hom}_{\mathfrak{U}(\mathscr{Q})}(\widetilde{\mathscr{K}}^{1}, Z(\mathscr{K})) \xrightarrow{d_{2}} \mathsf{Hom}_{\mathfrak{U}(\mathscr{Q})}(\widetilde{\mathscr{J}}^{1}, Z(\mathscr{K})) \xrightarrow{d_{3}} \\ \mathsf{Hom}_{\mathfrak{U}(\mathscr{Q})}(\widetilde{\mathscr{K}}^{2}, Z(\mathscr{K})) \to \dots$

The cohomology of this complex is isomorphic to $\mathbb{H}^{\bullet+1}(\mathscr{Q}; Z(\mathscr{K}))$.

Pick a lift $\tilde{\alpha} \colon \mathscr{F} \to \mathscr{D}er(\mathscr{K})$ of α and get commutative diagram

where β is the induced morphism.

Define a morphism

$$o: \widetilde{\mathcal{J}}^1 \to Z(\mathscr{K}) \tag{4}$$

It is enough to define o on an element of the type yx, where x is a generator of \mathscr{F} , and y is a generator of \mathscr{T}

 $o(yx) = \beta(\{x, y\}) - \tilde{\alpha}(x)(\beta(y)).$

Note that $o \in \operatorname{Hom}_{\mathfrak{U}(\mathscr{Q})}(\widetilde{\mathscr{J}^{1}}, Z(\mathscr{K})).$

Lemma

$$d_3(o) = 0$$
. Moreover, the cohomology class of $[o] \in \mathbb{H}^3(\mathscr{Q}; Z(\mathscr{K}))^{(1)}$ only depends on α .

Part I of the proof: if an extension exists consider the diagram

Define

$$\tilde{\alpha} \colon \mathscr{F} \to \mathscr{D}\textit{er}(\mathscr{K}, \mathscr{K}), \qquad \tilde{\alpha} = -\operatorname{ad} \circ \gamma$$

Then $\tilde{\alpha}$ is a lift of α , and for all sections t of \mathscr{T} and x of \mathscr{F}

$$\beta(\{x,t\}) - \tilde{\alpha}(x)(\beta(t)) = 0$$
(5)

< = > = √Q (>

so that the obstruction class $\mathbf{ob}(\alpha)$ vanishes.

Conversely, assume that $\mathbf{ob}(\alpha) = 0$, and take a lift $\tilde{\alpha}: \mathscr{F} \to \mathscr{D}er(\mathscr{K}, \mathscr{K})$. The corresponding cocycle lies in the image of the morphism d_2 , so it defines a morphism $\beta: \mathscr{T} \to \mathscr{K}$, which satisfies the equation (5). Again, we consider the extension

$$0 \to \mathscr{T} \to \mathscr{F} \to \mathscr{Q} \to 0.$$

Note that \mathscr{K} is an \mathscr{F} -module via $\mathscr{F} \to \mathscr{Q}$. The semidirect product $\mathscr{K} \rtimes \mathscr{F}$ contains the sheaf of Lie algebras

$$\mathscr{H} = \{(\ell, x) \mid x \in \mathscr{T}, \ \ell = \beta(x)\}.$$

The quotient $\mathscr{E} = \mathscr{K} \rtimes \mathscr{F}/\mathscr{H}$ provides the desired extension

Part II of the proof: reduction to the abelian case

Proposition

Once a reference extension \mathscr{E}_0 has been fixed, the equivalence classes of extensions of \mathscr{D} by \mathscr{K} inducing α are in a one-to-one correspondence with equivalence classes of extensions of \mathscr{D} by $Z(\mathscr{K})$ inducing α , and are therefore in a one-to-one correspondence with the elements of the group $\mathbb{H}^2(\mathscr{Q}; Z(\mathscr{K}))^{(1)}$ \mathscr{C}_1 , \mathscr{C}_2 Lie algebroids with surjective morphisms $f_i : \mathscr{C}_i \to \mathscr{Q}$. Assuming $Z(\ker f_1) \simeq Z(\ker f_2) = \mathscr{Z}$ define

 $\mathscr{C}_1 \star \mathscr{C}_2 = \mathscr{C}_1 \times_{\mathscr{Q}} \mathscr{C}_2 / \mathscr{Z},$

where $\mathscr{Z} \to \mathscr{C}_1 \times_{\mathscr{Q}} \mathscr{C}_2$ by $z \mapsto (z, -z)$

Fix a reference extension \mathscr{E}_0 of \mathscr{Q} by \mathscr{K}

Lemma

(1) Any extension \mathscr{E} of \mathscr{Q} by \mathscr{K} is equivalent to a product $\mathscr{E}_0 \star \mathscr{D}$ where \mathscr{D} is an extension of \mathscr{Q} by $Z(\mathscr{K})$

(2) Given two extensions \mathcal{D}_1 , \mathcal{D}_2 of \mathcal{Q} by $Z(\mathcal{K})$, the extensions $\mathcal{E}_1 = \mathcal{E}_0 \star \mathcal{D}_1$ and $\mathcal{E}_2 = \mathcal{E}_0 \star \mathcal{D}_2$ are equivalent if and only if \mathcal{D}_1 and \mathcal{D}_2 are equivalent

Open question (Work in progress (E. Aldrovandi and U. Bruzzo)):

Extend all this to the non-locally free case using free simplicial resolutions

Thank you!!

★ E ► < E ►</p>

æ

Volodya Rubtsov Cohomology of Lie algebroids 33/33

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ◆□ ◆ ○∧ ⊙