



# On the MIT bag model : Self-adjointness and non-relativistic limits

#### Loïc Le Treust

Maître de conférences at Aix-Marseille university.

Joint work with :

Naiara Arrizabalaga, Universidad del País Vasco. Nicolas Raymond, Université de Rennes 1.

Roma, September 2017

## Introduction

#### Non-relativistic particles confined in a box

 $\inf\{\lambda_d^1(\Omega) + b|\Omega|, \quad \Omega \text{ open subset of } \mathbb{R}^3\},\$ 

- $\lambda_d^1(\Omega)$  : Kinetic energy given by the 1<sup>st</sup> eig. of the Dirichlet Laplacian,
- $|\Omega|$  : energy of the box given by its volume,
- b > 0 : coupling constant.

Rk : The solution is a ball (unique up to translation).
Rk : Toy model in quantum physics ?
→ Quarks are perfectly confined (ex : protons, neutrons).

#### Non-relativistic approximation not valid for (light) quarks

 $-\Delta$  (Schrödinger's Op.)  $\rightsquigarrow$  *H* (Dirac's Op.)

### Physical context :

Confinement of quarks, anti-quarks, gluons inside the hadrons.

- ▶ The quarks and anti-quarks are fermions (elementary particles?),
- ► The elementary force involved : the strong force,
- ► The gluons are the associated gauge bosons,
- The hadrons are composite particles. Ex : neutrons, protons, mesons (gauge bosons for the strong nuclear force),...

# Problems

- 1. Define the operator related to the kinetic energy of confined relativistic particles → MIT bag Dirac operator.
- 2. Study the self-adjointness and its properties (asymptotic analysis).
- 3. . . .
- 4. Study the associated shape optimization problem.
- 5. Study the uniqueness of the shape (up to symmetries).



→ Problems with negative spectrum ?

- $[m, +\infty)$  is related to kinetic energy of particles,
- $(-\infty, -m]$  is related to kinetic energy of antiparticles.

Notation

$$\alpha \cdot \mathbf{A} = \sum_{k=1}^{3} \alpha_k \mathbf{A}_k$$

for  $A = (A_1, A_2, A_3)$ .

[Tha91] Thaller. The Dirac equation. (1991). Texts and Monographs in Physics.

Loïc Le Treust,

MIT bag Dirac operator on  $\Omega$  $(H_m^{\Omega}, Dom(H_m^{\Omega}))$  is defined on the domain

 $\mathsf{Dom}(H^{\Omega}_m) = \{\psi \in H^1(\Omega, \mathbb{C}^4) : \mathcal{B}\psi = \psi \text{ on } \partial\Omega\},\$ 

by  $H^{\Omega}_{m}\psi = H\psi$  for all  $\psi \in \mathsf{Dom}(H^{\Omega}_{m})$  where

 $\mathcal{B}(x) = -i\beta\alpha \cdot \mathbf{n}(x), \quad \forall x \in \partial\Omega\},$ 

**n** is the outward pointing normal to  $\partial \Omega$  (regular).

Physical interpretation of the boundary cond. :

 $\rightsquigarrow$  no normal quantum current at the boundary.

[CJJ+74] Chodos, Jaffe, Johnson, Thorn, Weisskopf. New extended model of hadrons (1974). Phys. Rev. D. [Joh75] Johnson. The MIT bag model. (1975) Acta Phys. Pol.

## Remarks on the boundary condition

- 1. One of the simplest local boundary condition for  $H_m^{\Omega}$  to be symmetric,  $\rightsquigarrow$  Despite its simplicity, it has been very successful for calculating some physical quantities.
- 2. The trace is well-defined by a classical trace theorem.
- The spectrum of the matrix B is ±1 : B\* = B and B<sup>2</sup> = 1<sub>4</sub>,
   → Another choice for the boundary condition is Bψ = -ψ : no normal quantum current, equivalent to considering inward pointing normal, the associated Dirac op. is symmetric.
- 4. Spontaneous chiral symmetry breaking.  $\rightarrow$  The chirality matrix  $\gamma_5 = -i\alpha_1\alpha_2\alpha_3$  satisfies

$$\gamma_5^2 = 1_4$$
,  $\gamma_5(-i\alpha \cdot \nabla + m\beta)\gamma_5 = -i\alpha \cdot \nabla - m\beta$  and  $\gamma_5 \mathcal{B}\gamma_5 = -\mathcal{B}$ .

#### Theorem

- i. (H, Dom(H)) is a self-adjoint operator with compact resolvent.
- ii. We denote by  $(\mu_n(m))_{n\geq 1} \subset \mathbb{R}^*_+$  the eigenvalues of |H|. The spectrum of H, denoted by sp(H), is symmetric with respect to 0 (with multiplicity) and

 $sp(H) = \{\pm \mu_n(m), n \ge 1\}.$ 

- iii. Each eigenvalue of H has even multiplicity.
- iv. For each  $\psi \in \text{Dom}(H)$ , we have  $\|H\psi\|_{L^{2}(\Omega)}^{2} = \|\alpha \cdot \nabla\psi\|_{L^{2}(\Omega)}^{2} + m\|\psi\|_{L^{2}(\partial\Omega)}^{2} + m^{2}\|\psi\|_{L^{2}(\Omega)}^{2},$ and

$$\|\alpha \cdot \nabla \psi\|_{L^2(\Omega)}^2 = \|\nabla \psi\|_{L^2(\Omega)}^2 + \frac{1}{2} \int_{\partial \Omega} \kappa |\psi|^2 dx.$$

where  $\kappa$  is the sum of the principal curvatures.

For the 2D case but  $\neq$  proof : Spectral gaps of Dirac operators with boundary conditions relevant for graphene. Benguria, Fournais, Stockmeyer, Van Den Bosch .(2016).

## Some steps in the proofs.

1. Symmetries and multiplicity

 $\rightsquigarrow$  come from the properties of the matrices  $\alpha_1, \alpha_2, \alpha_3$  and  $\beta$ .

2. The formulas for the quadratic form of  $H^2$ .

 $\rightsquigarrow$  come from integrations by parts and

$$[\alpha \cdot (\mathbf{n} \times D), \mathcal{B}] = -\kappa \gamma_5 \mathcal{B}$$

where  $D = -i\nabla$ .

3. The self-adjointness and in particular the proof of  $\mathcal{D}(H^*) \subset H^1(\Omega)$ .  $\rightsquigarrow$  comes from the existence of an extension operator

 $\mathcal{D}(H^*) \longrightarrow H^1(\mathbb{R}^3) \longrightarrow H^1(\Omega).$ 

#### 4. The compact resolvent property

 $\rightsquigarrow$  comes form the compact Sobolev embeddings.

Loïc Le Treust,

### The limit *m* tends to $+\infty$ .

## Theorem (N. Arrizabalaga, L.L.T., N. Raymond)

Let  $-\Delta^{\text{Dir}}$  be the Dirichlet Laplacian with domain  $H^2(\Omega, \mathbb{C}^4) \cap H^1_0(\Omega, \mathbb{C}^4)$ , and let  $(\mu_n^{\text{Dir}})_{n \ge 1}$  be the non-decreasing sequence of its eigenvalues. For all  $n \ge 1$ , we have

$$\mu_n(m) - \left(m + \frac{1}{2m}\mu_n^{\mathsf{Dir}}\right) \underset{m \to +\infty}{=} o\left(\frac{1}{m}\right) .$$

Element of proof : Pre-compactness of the sequences of eigenfunctions.

#### Theorem (N. Arrizabalaga, L.L.T., N. Raymond)

Let  $u_1 \in H_0^1(\Omega, \mathbb{C})$  be a  $L^2$ -normalized eigenfunction of the Dirichlet Laplacian associated with its lowest eigenvalue  $\mu_1^{\text{Dir}}$ . We have

$$\mu_1(m) - \left(m + \frac{1}{2m}\mu_1^{\mathsf{Dir}} - \frac{1}{2m^2}\int_{\partial\Omega}|\partial_{\mathsf{n}}u_1|^2dx\right) \underset{m \to +\infty}{=} o\left(\frac{1}{m^2}\right)$$

Element of proof :

• [Upper bound] formal asymptotic expansion and Fredholm alternative.

Loïc Le Treust,

## The limit *m* tends to $-\infty$ .

1. The boundary is attractive for the eigenfunctions with eigenvalues lying essentially in the Dirac gap [-|m|, |m|].

2. The distribution of the eigenfunctions is governed by the boundary operator

# $\mathcal{L} - \frac{\kappa^2}{4} + K$

where  $\kappa$  and K are the trace and the determinant of the Weingarten map, respectively, and where  $\mathcal{L}$  is defined as follows.

#### Definition

The operator  $(\mathcal{L}, \mathsf{Dom}(\mathcal{L}))$  is the self-adjoint operator associated with the quadratic form

 $\mathcal{Q}(\psi) = \int_{\partial\Omega} \| 
abla_s \psi \|^2 dx \,, \quad \forall \psi \in H^1(\partial\Omega, \mathbb{C})^4 \cap \ker(\mathcal{B} - 1_4) \,.$ 

Theorem (N. Arrizabalaga, L.L.T., N. Raymond) Let  $\varepsilon_0 \in (0, 1)$  and

$$\mathsf{N}_{\varepsilon_{\mathbf{0}},m} := \{ n \in \mathbb{N}^* : \mu_n(-|m|) \le |m|\sqrt{1-\varepsilon_0} \} \,.$$

There exist  $C_{-}$ ,  $C_{+}$ ,  $m_0$  such that, for all  $|m| \ge m_0$  and  $n \in N_{\varepsilon_0,m}$ ,

 $\mu_n^-(|m|) \le \mu_n(-|m|) \le \mu_n^+(|m|),$ 

with  $\mu_n^{\pm}(|m|)$  being the non-decreasing sequence of eigenvalues of the operators  $L_m^{\pm}$  of  $L^2(\partial\Omega, \mathbb{C})^4$  defined by

$$L_m^- = \left( [1 - C_- |m|^{-\frac{1}{2}}] \mathcal{L} - \frac{\kappa^2}{4} + \mathcal{K} - C_- |m|^{-1} \right)_+^{\frac{1}{2}},$$
$$L_m^+ = \left( [1 + C_+ |m|^{-\frac{1}{2}}] \mathcal{L} - \frac{\kappa^2}{4} + \mathcal{K} + C_+ |m|^{-1} \right)^{\frac{1}{2}}.$$

#### Corollary

For all  $n \in \mathbb{N}^*$ , we have that

$$\mu_n(-|m|) \stackrel{=}{=} \widetilde{\mu}_n^{\frac{1}{2}} + \mathcal{O}(|m|^{-\frac{1}{2}}),$$

where  $(\widetilde{\mu}_n)_{n \in \mathbb{N}^*}$  is the non-decreasing sequence of the eigenvalues of the following non-negative operator on  $L^2(\partial\Omega,\mathbb{C})^4 \cap \ker(1_4-\mathcal{B})$ :

$$\mathcal{L}-rac{\kappa^2}{4}+K$$
.

An inspiration : Weyl formulae for the Robin Laplacian in the semiclassical limit **A. Kachmar**, **P. Keraval** and **N. Raymond**. Confluentes Mathematici (2017).

Other works for the Robin Laplacian by : Exner, Freitas, Helffer, Kachmar, Krejčiřík, Levitin, Minakov, Pankrashkin, Parnovski, Popoff,...

# Ingredients of the proof

Agmon estimates : exponential confinement at the boundary.
 → using tests functions of the form

 $\psi_m^n(\cdot) \exp\left(-|m|\gamma \mathsf{d}(\cdot,\partial\Omega)\right)$ 

where

▶  $\psi_m^n$  is an eigenfunction whose eigenvalue  $\mu_n(-|m|)$  satisfies

 $\mu_n(-|m|) \leq |m|\sqrt{1-\varepsilon_0}$ ,

• 
$$\gamma \in (0, \sqrt{arepsilon_0})$$
 and  $arepsilon_0 \in (0, 1)$ ,

- d is the euclidean distance.
- 2. Tubular coordinates near the boundary and semiclassical rescaling.  $\rightsquigarrow$  using the parameters  $(s, \tau) \in \partial\Omega \times \mathbb{R}_+$  where

$$x = s - |m|^{-1}\tau \mathbf{n}(s)$$

for  $x \in \Omega$  s.t.  $d(x, \partial \Omega)$  is small enough.

- 3. Born-Oppenheimer reduction : multiscales analysis.
  - the leading order op. forces the confinement near the boundary (acts in the normal direction).
  - ▶ the next scale contributions give us the operator acting on the *s*-variable.

#### On the MIT bag model

## Grazie ! Thanks !

Arrizabalaga, N.; Le Treust, L.; Raymond, N. On the MIT bag model in the non-relativistic limit. Comm. Math. Phys. 354 (2017), no. 2, 641–669.