INSTITUT
de MATHÉMATIQUES

On the MIT bag model :
 Self-adjointness and non-relativistic limits

Loïc Le Treust
Maître de conférences at Aix-Marseille university.

Joint work with :
Naiara Arrizabalaga, Universidad del País Vasco.
Nicolas Raymond, Université de Rennes 1.

Roma, September 2017

Introduction

Non-relativistic particles confined in a box

$$
\inf \left\{\lambda_{d}^{1}(\Omega)+b|\Omega|, \quad \Omega \text { open subset of } \mathbb{R}^{3}\right\}
$$

- $\lambda_{d}^{1}(\Omega)$: Kinetic energy given by the $1^{\text {st }}$ eig. of the Dirichlet Laplacian,
- $|\Omega|$: energy of the box given by its volume,
- $b>0$: coupling constant.
$\mathbf{R k}$: The solution is a ball (unique up to translation).
$\mathbf{R k}$: Toy model in quantum physics?
\rightsquigarrow Quarks are perfectly confined (ex : protons, neutrons).
Non-relativistic approximation not valid for (light) quarks

$$
-\Delta \text { (Schrödinger's Op.) } \rightsquigarrow H \text { (Dirac's Op.) }
$$

Physical context:

Confinement of quarks, anti-quarks, gluons inside the hadrons.

- The quarks and anti-quarks are fermions (elementary particles?),
- The elementary force involved : the strong force,
- The gluons are the associated gauge bosons,
- The hadrons are composite particles. Ex : neutrons, protons, mesons (gauge bosons for the strong nuclear force),...

Problems

1. Define the operator related to the kinetic energy of confined relativistic particles \rightsquigarrow MIT bag Dirac operator.
2. Study the self-adjointness and its properties (asymptotic analysis).
3. ...
4. Study the associated shape optimization problem.
5. Study the uniqueness of the shape (up to symmetries).

Dirac's operator on \mathbb{R}^{3}

$-H=-i \sum_{k=1}^{3} \alpha_{k} \partial_{k}+\beta m=-i \alpha . \nabla+\beta m,\left\{\begin{array}{l}m \in \mathbb{R}, \text { (mass) }, \\ \left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \beta \in \mathbb{C}^{4 \times 4} \text { hermit. }\end{array}\right.$ self-adj. on $L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right)^{4}$,

$$
H^{2}=-\Delta+m^{2}
$$

\rightsquigarrow Problems with negative spectrum?

- $[m,+\infty)$ is related to kinetic energy of particles,
- $(-\infty,-m]$ is related to kinetic energy of antiparticles.

Notation

$$
\alpha \cdot A=\sum_{k=1}^{3} \alpha_{k} A_{k}
$$

for $A=\left(A_{1}, A_{2}, A_{3}\right)$.
[Tha91] Thaller. The Dirac equation. (1991). Texts and Monographs in Physics.

MIT bag Dirac operator on Ω

$\left(H_{m}^{\Omega}, \operatorname{Dom}\left(H_{m}^{\Omega}\right)\right)$ is defined on the domain

$$
\operatorname{Dom}\left(H_{m}^{\Omega}\right)=\left\{\psi \in H^{1}\left(\Omega, \mathbb{C}^{4}\right): \mathcal{B} \psi=\psi \text { on } \partial \Omega\right\},
$$

by $H_{m}^{\Omega} \psi=H \psi$ for all $\psi \in \operatorname{Dom}\left(H_{m}^{\Omega}\right)$ where

$$
\mathcal{B}(x)=-i \beta \alpha \cdot \mathbf{n}(x), \quad \forall x \in \partial \Omega\},
$$

\mathbf{n} is the outward pointing normal to $\partial \Omega$ (regular).

Physical interpretation of the boundary cond. :
\rightsquigarrow no normal quantum current at the boundary.
[CJJ+74] Chodos, Jaffe, Johnson, Thorn, Weisskopf. New extended model of hadrons (1974). Phys. Rev. D. [Joh75] Johnson. The MIT bag model. (1975) Acta Phys. Pol.

Remarks on the boundary condition

1. One of the simplest local boundary condition for H_{m}^{Ω} to be symmetric, \rightsquigarrow Despite its simplicity, it has been very successful for calculating some physical quantities.
2. The trace is well-defined by a classical trace theorem.
3. The spectrum of the matrix \mathcal{B} is $\pm 1: \mathcal{B}^{*}=\mathcal{B}$ and $\mathcal{B}^{2}=1_{4}$, \rightsquigarrow Another choice for the boundary condition is $\mathcal{B} \psi=-\psi$: no normal quantum current, equivalent to considering inward pointing normal, the associated Dirac op. is symmetric.
4. Spontaneous chiral symmetry breaking.
\rightsquigarrow The chirality matrix $\gamma_{5}=-i \alpha_{1} \alpha_{2} \alpha_{3}$ satisfies

$$
\gamma_{5}^{2}=1_{4}, \gamma_{5}(-i \alpha \cdot \nabla+m \beta) \gamma_{5}=-i \alpha \cdot \nabla-m \beta \text { and } \gamma_{5} \mathcal{B} \gamma_{5}=-\mathcal{B} .
$$

Theorem

i. $(H, \operatorname{Dom}(H))$ is a self-adjoint operator with compact resolvent.
ii. We denote by $\left(\mu_{n}(m)\right)_{n \geq 1} \subset \mathbb{R}_{+}^{*}$ the eigenvalues of $|H|$. The spectrum of H, denoted by $\operatorname{sp}(H)$, is symmetric with respect to 0 (with multiplicity) and

$$
\operatorname{sp}(H)=\left\{ \pm \mu_{n}(m), n \geq 1\right\} .
$$

iii. Each eigenvalue of H has even multiplicity.
iv. For each $\psi \in \operatorname{Dom}(H)$, we have

$$
\|H \psi\|_{L^{2}(\Omega)}^{2}=\|\alpha \cdot \nabla \psi\|_{L^{2}(\Omega)}^{2}+m\|\psi\|_{L^{2}(\partial \Omega)}^{2}+m^{2}\|\psi\|_{L^{2}(\Omega)}^{2},
$$

and

$$
\|\alpha \cdot \nabla \psi\|_{L^{2}(\Omega)}^{2}=\|\nabla \psi\|_{L^{2}(\Omega)}^{2}+\frac{1}{2} \int_{\partial \Omega} \kappa|\psi|^{2} d x .
$$

where κ is the sum of the principal curvatures.

For the 2D case but \neq proof : Spectral gaps of Dirac operators with boundary conditions relevant for graphene. Benguria, Fournais, Stockmeyer, Van Den Bosch .(2016).

Some steps in the proofs.

1. Symmetries and multiplicity
\rightsquigarrow come from the properties of the matrices $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and β.
2. The formulas for the quadratic form of H^{2}.
\rightsquigarrow come from integrations by parts and

$$
[\alpha \cdot(\mathbf{n} \times D), \mathcal{B}]=-\kappa \gamma_{5} \mathcal{B}
$$

where $D=-i \nabla$.
3. The self-adjointness and in particular the proof of $\mathcal{D}\left(H^{*}\right) \subset H^{1}(\Omega)$.
\rightsquigarrow comes from the existence of an extension operator

$$
\mathcal{D}\left(H^{*}\right) \longrightarrow H^{1}\left(\mathbb{R}^{3}\right) \longrightarrow H^{1}(\Omega) .
$$

4. The compact resolvent property
\rightsquigarrow comes form the compact Sobolev embeddings.

The limit m tends to $+\infty$.

Theorem (N. Arrizabalaga, L.L.T., N. Raymond)
Let $-\Delta^{\text {Dir }}$ be the Dirichlet Laplacian with domain $H^{2}\left(\Omega, \mathbb{C}^{4}\right) \cap H_{0}^{1}\left(\Omega, \mathbb{C}^{4}\right)$, and let $\left(\mu_{n}^{\text {Dir }}\right)_{n \geq 1}$ be the non-decreasing sequence of its eigenvalues. For all $n \geq 1$, we have

$$
\mu_{n}(m)-\left(m+\frac{1}{2 m} \mu_{n}^{\text {Dir }}\right) \underset{m \rightarrow+\infty}{=} o\left(\frac{1}{m}\right)
$$

Element of proof : Pre-compactness of the sequences of eigenfunctions.
Theorem (N. Arrizabalaga, L.L.T., N. Raymond)
Let $u_{1} \in H_{0}^{1}(\Omega, \mathbb{C})$ be a L^{2}-normalized eigenfunction of the Dirichlet Laplacian associated with its lowest eigenvalue $\mu_{1}^{\text {Dir }}$. We have

$$
\mu_{1}(m)-\left(m+\frac{1}{2 m} \mu_{1}^{\mathrm{Dir}}-\frac{1}{2 m^{2}} \int_{\partial \Omega}\left|\partial_{\mathbf{n}} u_{1}\right|^{2} d x\right) \underset{m \rightarrow+\infty}{=} o\left(\frac{1}{m^{2}}\right) .
$$

Element of proof :

- [Upper bound] formal asymptotic expansion and Fredholm alternative.

The limit m tends to $-\infty$.

1. The boundary is attractive for the eigenfunctions with eigenvalues lying essentially in the Dirac gap $[-|m|,|m|]$.
2. The distribution of the eigenfunctions is governed by the boundary operator

$$
\mathcal{L}-\frac{\kappa^{2}}{4}+K
$$

where κ and K are the trace and the determinant of the Weingarten map, respectively, and where \mathcal{L} is defined as follows.

Definition

The operator $(\mathcal{L}, \operatorname{Dom}(\mathcal{L}))$ is the self-adjoint operator associated with the quadratic form

$$
\mathcal{Q}(\psi)=\int_{\partial \Omega}\left\|\nabla_{s} \psi\right\|^{2} d x, \quad \forall \psi \in H^{1}(\partial \Omega, \mathbb{C})^{4} \cap \operatorname{ker}\left(\mathcal{B}-1_{4}\right) .
$$

Theorem (N. Arrizabalaga, L.L.T., N. Raymond)
Let $\varepsilon_{0} \in(0,1)$ and

$$
\mathbb{N}_{\varepsilon_{0}, m}:=\left\{n \in \mathbb{N}^{*}: \mu_{n}(-|m|) \leq|m| \sqrt{1-\varepsilon_{0}}\right\} .
$$

There exist C_{-}, C_{+}, m_{0} such that, for all $|m| \geq m_{0}$ and $n \in \mathrm{~N}_{\varepsilon_{0}, m}$,

$$
\mu_{n}^{-}(|m|) \leq \mu_{n}(-|m|) \leq \mu_{n}^{+}(|m|),
$$

with $\mu_{n}^{ \pm}(|m|)$ being the non-decreasing sequence of eigenvalues of the operators $L_{m}^{ \pm}$of $L^{2}(\partial \Omega, \mathbb{C})^{4}$ defined by

$$
\begin{aligned}
& L_{m}^{-}=\left(\left[1-C_{-}|m|^{-\frac{1}{2}}\right] \mathcal{L}-\frac{\kappa^{2}}{4}+K-C_{-}|m|^{-1}\right)_{+}^{\frac{1}{2}}, \\
& L_{m}^{+}=\left(\left[1+C_{+}|m|^{-\frac{1}{2}}\right] \mathcal{L}-\frac{\kappa^{2}}{4}+K+C_{+}|m|^{-1}\right)^{\frac{1}{2}}
\end{aligned}
$$

Corollary

For all $n \in \mathbb{N}^{*}$, we have that

$$
\mu_{n}(-|m|) \underset{m \rightarrow+\infty}{=} \widetilde{\mu}_{n}^{\frac{1}{2}}+\mathcal{O}\left(|m|^{-\frac{1}{2}}\right)
$$

where $\left(\widetilde{\mu}_{n}\right)_{n \in \mathbb{N}^{*}}$ is the non-decreasing sequence of the eigenvalues of the following non-negative operator on $L^{2}(\partial \Omega, \mathbb{C})^{4} \cap \operatorname{ker}\left(1_{4}-\mathcal{B}\right)$:

$$
\mathcal{L}-\frac{\kappa^{2}}{4}+K
$$

An inspiration: Weyl formulae for the Robin Laplacian in the semiclassical limit A. Kachmar, P. Keraval and N. Raymond. Confluentes Mathematici (2017).

Other works for the Robin Laplacian by : Exner, Freitas, Helffer, Kachmar, Krejc̄irík, Levitin, Minakov, Pankrashkin, Parnovski, Popoff,. . .

Ingredients of the proof

1. Agmon estimates : exponential confinement at the boundary. \rightsquigarrow using tests functions of the form

$$
\psi_{m}^{n}(\cdot) \exp (-|m| \gamma \mathrm{d}(\cdot, \partial \Omega))
$$

where

- ψ_{m}^{n} is an eigenfunction whose eigenvalue $\mu_{n}(-|m|)$ satisfies

$$
\mu_{n}(-|m|) \leq|m| \sqrt{1-\varepsilon_{0}}
$$

- $\gamma \in\left(0, \sqrt{\varepsilon_{0}}\right)$ and $\varepsilon_{0} \in(0,1)$,
- d is the euclidean distance.

2. Tubular coordinates near the boundary and semiclassical rescaling. \rightsquigarrow using the parameters $(s, \tau) \in \partial \Omega \times \mathbb{R}_{+}$where

$$
x=s-|m|^{-1} \tau \mathbf{n}(s)
$$

for $x \in \Omega$ s.t. $d(x, \partial \Omega)$ is small enough.
3. Born-Oppenheimer reduction : multiscales analysis.

- the leading order op. forces the confinement near the boundary (acts in the normal direction).
- the next scale contributions give us the operator acting on the s-variable.

Grazie! Thanks!

Arrizabalaga, N.; Le Treust, L. ; Raymond, N. On the MIT bag model in the non-relativistic limit. Comm. Math. Phys. 354 (2017), no. 2, 641-669.

